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INTRODUCTION.

-

THE Author has been induced to prepare this work by many
considerations. In the first place, no general work upon the
Stability of Ships exists, so far as he is aware, in our language,
although several authors have treated the subject satisfactorily as
parts of more comprehensive works. In the next place, both the
science and the practice of the subject have recently undergone
great developments, at home and abroad, the results being scattered
over many and various publications; and it was undoubtedly
desirable to bring them together, and place them into due relation
to each other. Again, during the present, as during the last century,
French investigators have taken a leading part in the extension of
this branch of science, and it is essential to the sound education of
English naval architects and others, that the results of their labours
should be brought within easy reach. Finally, the number of
persons who now are required, by their professional avocations in
connection with ships, to obtain some knowledge of the doctrines
of stability is so great, that this work may fairly be taken as a
response, and a somewhat tardy response, to a demand which has
long been felt for collected information on the subject, and which,
during the last year, has become widespread and urgent.

No degree of justice can be done to the feelings with which one
surveys the wide field of this branch of naval science without express-
ing almost boundless admiration of the genius which has been dis-
played, and the labour which has been expended upon it, throughout
the whole period of its cultivation, by men of science in France. The
names of Bouguer and Dupin will probably excite greater and more
enduring admiration throughout the world, in connection with this
subject, than any other names whatever; and the author cannot
but believe that the simple and beautiful manner in which M. Reech
(as will be seen hereafter in chapter xiii.) unfolded the system of
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calculating the stability for various draughts of water and angles
of inclination, by means of the co-ordinates of the successive centres
of buoyancy, serves to prove that nothing of the mastery displayed
by Bouguer and Dupin has been wanting in their successors. This
volume will show that the names of Risbee, Leclert, Guyou, and that
of the late MM. Dargnies and Ferranty, should not be without
honour in this connection; while the very complete and practical
system recently worked out by M. V. Daymard, of Marseilles,* has
already commanded what it well deserved—the approbation and
applause of the entire profession. Of M. Bertin’s masterly work in
connection with stability, this volume is not without illustrations,
although his most important labours have been devoted to the still
more difficult and complex study of the movements of ships at sea.
The prime characteristic of the French writers on the doctrines
of stability has been their comprehensive grasp of the subject.
While on this side of the Channel the tendency has usually been to
limit our investigations to the bounds which embrace the actual or
expected requirements of those who build ships or command them
at sea, on the other side of the Channel, French investigators have
usually passed far beyond these bounds, and have explored the
whole theory of the stability of floating bodies, in all its geometrical
breadth and completeness. Occasionally—as will hereafter be seen
in our remarks upon Bouguer’s views of the Métacentrique, and
in some of our observations upon Dupin’s work—they have gone a
little too fast and too far; but their habit of dealing largely with
the subject has secured to them great advantages in recent days,
when the construction of ships-of-war of low freeboard, and of
merchant steamships of very small initial stability, combined with
great variations of stability on the voyage (occasioned by a large
consumption of fuel, shifting cargoes, &c.), has made it absolutely
necessary to bring all the probable stability conditions of a ship
into full view and under calculation. It was only in 1867 or 1868,
when proposals for placing low-sided monitors under canvas came
officially before the author, at the Admiralty, that the necessity for
extending stability calculations to large angles, came strongly under
notice, and resulted in the construction of “Curves of Stability.”
It was later still when the practice of calculating stability at greatly
different draughts of water, chiefly in the case of merchant steamers,
came into vogue among us. But as long ago as 1863, M. G. Dargnies

* See chapter xvi., commencing on page 311.
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was making calculations at Marseilles for numerous angles of
inclination, and for four or five draughts of water ; and in 1864, M.
Reech put forward his admirable system, to which reference has
already been made.

Both to Bouguer and to Dupin, and likewise to M. Reech, we
have endeavoured to do justice in the course of this volume; but,
having just shown that the habit of cultivating large views of the
subject has given to France much advantage and honour, we would
here commend that habit, at least to younger students of the subject,
as combining intellectual pleasure with professional advantage in
a high degree. The mind that can clearly follow the movements of
the centre of buoyancy of a ship, when inclined continuously in one
direction, as it traces out a curve of buoyancy, can almost as
readily conceive of the same centre, when the ship is inclined
through all possible angles and in all possible directions, tracing
out & complete surface of buoyancy. When once this is clearly seen,
and the part played by the gravity of the ship, acting through its
centre of gravity, is likewise understood, there is opened up a
beautiful domain of further study, which will delight the mind of
any earnest student of geometrical science. In this domain, Dupin
has developed much that is as important as it is attractive. Imagin-
ing lines drawn in all directions from the centre of gravity to the
surface of buoyancy, “normally,” or at right angles to the surface, he
shows that when these lines are minima, they indicate positions of
stable equilibrium, and when mawima, unstable equilibrium. This,
and other associated doctrines, he demonstrates by the charming
device of conceiving spheres, which either just embrace the surface of
buoyancy, or just touch its interior, with intermediate spheres
situated between them, fulfilling certain conditions. This con-
ception has been improved upon by M. Guyou (see chapter xv.),
who imagines a moist sphere of variable diameter expanding within
the surface of buoyancy, wetting it at various places as it expands,
and thus forming a series of isles and lakelets, which define the
limits of stable and unstable equilibrium. It cannot be doubted
that where the intelligence is trained to pursue investigations of
this nature, in which pure imagination and pure science are brought
equally into activity, the advantage to the student is very great
indeed. At the same time it is highly satisfactory to know that
French investigators, who have achieved so much distinction in the
highest parts of the science of stability, have likewise advanced
practical systems of calculation in a very remarkable manner.
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To M. Risbec is due the credit of promptly and practically re-
ducing M. Reech’s system to tabular forms for calculation; the late
M. Ferranty expressly directed his labours to a like object; and
M. Daymard held back his theoretical results until he was able to
accompany them with appropriate practical tables.*

The labours of English investigators, although directed to objects
less attractive and brilliant than some of those developed by Dupin
and other French writers, have not been deficient either in skill or
in value. Atwood, with a simplicity and directness which are
perhaps characteristic of most English scientific investigators, turned
from Bouguer’s somewhat hastily extended metacentric theory, and
closely examined the measure of a ship’s stability when inclined at
a given finite angle. His method of investigation was perfectly
sound ; the fundamental formule which he obtained were no less
correct; the abundant illustrations which he worked out were most
instructive; and the practical methods of calculation which he
employed—both such as were designed to be exact, and such as
were avowedly approximate—were deserving of all confidence.
Later English investigators have mainly followed in the same path,
Mr. F. K. Barnes, of the Admiralty, having distinguished himself
more than any other Englishman, by the novel application of graphic
and other eminently practical processes to the production of simple
and trustworthy methods of calculating stability.

It is a remarkable fact that, notwithstanding the extent to which
French processes have anticipated ours in point of time, English
systems of calculation suited to the requirements of the present
day, and more especially to those of the mercantle marine, appear
to have been quite independently developed in this country. Until
the present year, no one here, to the best of the author’s knowledge,
had become acquainted with the real character of the investigations
of M. Reech, with the exception of the author, and he only had come
into possession of them through the private courtesy of M.V. Daymard.
M. Daymard’s own admirable Mémoire only became known to the
author in consequence of, and some time after, the appearance of
the report on the Daphne accident. But Mr. W. Denny and Mr.
John Inglis, of the Clyde, had for some time past been at work upon
those extended investigations of stability which the losses of cargo-
carrying vessels had probably suggested, and which, as those

* For translations of the tabular forms of MM. Risbec and Daymard, see the
ond of this volume.
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gentlemen were prompt to observe, were really essential to the
safety of the mercantile marine. The subject has also for some
time past been engaging the attention of Mr. Martell, Mr. White,
Mr. John, and several other naval architects, while Professor Elgar,
in the course of his practice, was giving close attention to the
subject. Mr. White, in 1882, treated it well, and at considerable
length in the third chapter of his excellent Manual of Naval
Architecture. At the meeting of the Royal Society, held on the
6th March, 1884, Professor Elgar produced a valuable Paper on the
“Variation of Stability with Draught of Water;”* and a month later,
at the meeting of the Institution of Naval Architects, several highly
important English Papers upon Stability, all of them exhibiting an
equally enlarged method of treatment, were produced simultaneously
with the production there of M. Daymard’s, and of another by a
young German naval architect, Mr. Benjamin.}

In France first, therefore, and later (but, as would appear, quite
independently) in this country also, the subject of the Stability of
Ships has assumed at length its full importance, and received the
comprehensive treatment which it has come practically to require.
In the old days, when ships were mainly propelled by means of
sails, and when large stability was necessary to enable them to stand
up against the force of the wind, it was usual to give them a large
measure of righting force, and this enabled their constructors and
those who sailed them to dispense with refined calculations. Even
in those days, however, insufficient stability was a not uncommon
fault, and such contrivances as excessive ballasting, and doubling
the plank of the hull at and above the water-line, had not unfre-
quently to be resorted to. With the abandonmrent of sail-power
in s0 many ships, and in the belief that smallness of breadth,
within reasonable limits, was favourable to speed, it became the
general fashion to greatly reduce the stability of new vessels, and
it has been placed beyond doubt that many ships have been lost at
sea in consequence, including some sailing ships, in which the
reduction of the righting force was carried too far. This volume
will at least serve to show, it is believed, that there is nothing in
the circumstances of either mercantile. or war ships to hinder a
complete knowledge of their stability, under all probable conditions,
being ascertained and formulated.

A highly satisfactory feature of the present condition of the
stability question, is the very practical manner in which it is

* Bee chapter x. hereafter, t See chapter viil, hereafter.
h
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considered by naval constructors, and the efforts they are exerting
to make the results of their calculations intelligible and clear to
naval officers, both of the Royal and Mercantile Marine. Professor
Elgar, who has the highest and most mathematical branches
of the subject well within his grasp, has shown a praiseworthy
disposition to assist those who cannot be expected at present to
comprehend readily either formul®, or diagrams, or even the
technical terms of the naval architects. He has also done good
service by bringing into clear view the fact that when we speak of
the stability of a ship, we do not usually refer to some intrinsic
quality which she possesses of herself, apart from what she carries;
but to the stability of the stowed ship, or of the ship and all she
carries ; and the measure of her stability, therefore, can only be
ascertained by taking all the weights on board her into account,
both as to their amounts and as to their positions. It is no doubt
trite to say that the stability of the ship, thus viewed, varies with
every change in the weights on board her, and with every change of
position of every weight on board her ; but, familiar as the fact may
be, its effective force is much too often neglected, and many a ship
and many scores of lives have been sacrificed in consequence.

“ It often diverts attention from the main cause of loss,” says Professor
Elgar, “to say that it occurred because the ship was unstable. The fact
is, that the ship has frequently so little to do with the matter, and the
stowage 8o much, that it is the latter which should be blamed for the
instability, and not the ship herself. When a ship is built for a particular
trade, and for the purpose of carrying certain specific cargoes, she may
then, of course, be 80 designed as to be quite stable, in all conditions,
while thus employed ; but when vessels are built, as they often are, to
dimensions fixed by owners, for general trading purposes, it is seldom
possible for the designer to provide against instability arising in some
possible or conceivable circumstances of loading. The due preservation
of stability in such cases requires to be watched and provided for by
those who control the loading. It is erronecus to suppose, as appears to
be sometimes done, that a cargo-carrying steamer should be so constructed
and proportioned as to run no risk of becoming unstable, however she
may be laden. If this idea were acted upon, such a mode of preventing
instability, however easy and plausible it may at first sight appear to be,
would only defeat the desired object of promoting safety at sea, because
it would make many vessels dangerously stiff when laden with some
classes of cargo. The true and reasonable mode of procedure is not to
attempt to construct a ship so that she will be stable however she may be
laden, but to see that any tendency she may have towards instability—
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if any such exists—is understood by those in charge of her, and that she
is always laden with careful reference toit. There are no steamers afloats
whatever tendency they may have towards instability as sometimes laden,
that might not be kept perfectly safe if treated with full knowledge of
what their stability is, and their stowage regulated accordingly. One
great problem that the mercantile naval architect has just now to solve
is, how any dangerous features of a ship’s stability are to be made clearly
known to those in charge of her, and in what manner they can be best
taught to regulate the loading in cases where special care may be
required.”

And Professor Elgar's mode of attempting the solution of this
problem is the following :—

“In advising upon how a steamer should be treated and loaded so as
to be kept safe in respect of stability, I state, 1st, the quantity of ballast,
if any, that is required to enable her to stand up when quite empty,
without water in boilers or tanks, coal in bunkers, and with a clean-swept
hold, and to be stiff enough for all working requirements in dock or river;
2nd, if she is to be employed in carrying homogeneous cargoes, what
proportion of the space in the ’tween-decks it is safe tq fill with such
cargo, after the holds are full, and what weight of ballast is required in
the bottom to enable the vessel to be loaded to her maximum draught
with such cargo ; 3rd, if required to carry two or more kinds of homo-
geneous cargo, such as grain and cotton, grain and wool, grain, meat, and
wool, &c., the best mode of stowage, and whether or not the space in the
’tween-decks can be filled with the lightest of the cargoes, and in what
circumstances ballast, and how much of it will be required ; 4th, if not
intended for homogeneous cargoes, but for general cargoes, or partly
homogeneous and partly general, the average densities of the general
goods for various ports is arrived at after a little experience, and the
same system adopted. The main point is, to state what space, if any,
must be left unfilled in the ’tween-deck cargo spaces, with the different
descriptions of cargo, and what ballast, if any, is necessary if the vessel
i8 to be loaded to her maximum draught ; 5th, if the consumption of the
coal diminishes the stability materially, as is often the case in some
classes of steamers, to call prominent attention to this fact, in order that
the captain may not be misled by finding his ship appear to be rather
stiff on commencing a voyage. The possible consumption of coal is, of
course, taken into account in fixing upon the limits that should be
imposed upon the stowage in all the conditions named ; and, 6th, if there
appear to be any circamstances in which a tendency towards instability
may arise they are described.”*

* Professor Elgar’s Paper on ‘‘ The Use of Stability Calculations in Regulating
the Loading of Steamers.”’— T'ransactions of Institution of Naval Architects for 1884,
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While adducing this as & laudable example of the manner in
which the scientific investigator can assist the sailor, the stevedore,
the agent, and others, we are not without hope that the time is
approaching when the education of the officers of the mercantile
marine, will be so far improved as to enable the greater part of
them to understand perfectly all the conditions of the stability of
their ships when these are reflected in suitable diagrams. Even the
smaller classes of merchant steamers are valuable pieces of property,
and carry each a few lives that ought not to be thrown away
because the man in command is ignorant of some of the conditions
of their safety; while, as regards the larger classes of ships, in which
many scores, sometimes hundreds, of lives are embarked, it is in-
tolerable that persons who are fully competent to master, in any
and every practical form, the conditions of their safety should not
be found to command them.

And this consideration leads to an expression of the author’s
regret that, simple as are the fundamental principles of stability,
it is impossible to carry an exposition of them to any great length
without the resort to mathematical expressions. Than the primary
principles upon which all such expressions and all stability diagrams
depend, nothing can be simpler. The whole weight of the ship
and all on board tends downwards under the attraction of gravita-
tion, virtually acting through its centre of gravity; the whole
buoyancy of the ship acts upwards through its centre of buoyancy.
If these two great aggregate forces act in the same vertical line
there will be equilibrium; if they act in different vertical lines
motion must ensue, and will continue until the two lines come
together and coincide; the distance between these two lines,
when they do not coincide, is the measure of the leverage with
which the ship tends to upright herself or further incline; and,
whether she will continue to incline or will return to the upright
depends upon the direction in which the two forces tend to turn
her, which direction is always pretty obvious: these are really and
truly the only essential doctrines of the stability of ships. It is
when you come to measure the separation of the two lines aforesaid,
for any given position of the ship, that all the difficulty and com-
plication enters, because then you have to take into account the
varying form of the ship, which changes more or less from point to
point, and is comprised within rounded or curved surfaces, the
volumes of which it is difficult to measure.

In writing this work the author has endeavoured to.make the
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earlier chapters intelligible even to those who do not understand
mathematics, and in those earlier chapters will be found all that
many persons who are concerned with ships require to know. But
non-mathematical readers should not be readily deterred from
pressing on with their study of the subject by the occasional intru-
sion of a sign of integration, or other mathematical symbol. The
general sense and purpose may often be easily mastered even by
those who cannot interpret the mathematical expressions.

I have considered it desirable to do all that was possible in the
body of this work to clear up certain ambiguities that have arisen,
touching the uses of such terms as “metacentre,” “curves of meta-
centres,” “ metacentric curves,” &c., and have attempted to employ
them for single and definite purposes. I trust that my attempt will
be supported and furthered by future writers on the subject. It
is unnecessary to refer here to more than one ground of ambiguity,
to which Professor Osborne Reynolds made serviceable reference
at the British Association in 1883, After referring to a proposal
previously made to define stability, in a quantitative sense, as
measuring “the greatest angular disturbance from which a ship.
would recover,” and to substitute the term “stiffness” to “ measure
the righting moment in any position,” Professor Reynolds said—
“My object was to call attention to the importance of such a
system. In recent literature on naval architecture the term stability
occurs over and over again in the sense of righting moment, and
this under circumstances where the context shows the meaning to
be incompatible with any meaning that can be given to the word,
for stability must refer to some position in which the ship is stable;
so that when it is said that a ship has initial stability, and has
some stability at a heel of 90 degrees, it would seem that the ship
would be stable (i., tend to hold its position) in either of the
positions ; but as this is clearly not what is meant, then it would
seem that some stability at 90 degrees means that a ship is stable
about the erect position for angular disturbances of 90 degrees.
This, however, it appears, is not the sense in which the words are
to be understood, some stability meaning that the ship tends to
return fowards, not necessarily fo, its erect position, and has some
positive righting moment.” Although there is nothing in this state-
ment of the case which, in any way, corrects or conflicts with the
well-understood science of the subject, it deserves careful attention,
because it well points out an instance of the looseness with which
the word “ stability "—like the word “metacentre,” as we shall
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see—has come sometimes to be employed.* In its most general
sense, the stability of a floating body is nothing more than its
tendency to remain in, or return to, a given position of equilibrium.
But wherever this tendency exists, it so exists by virtue of the
“ righting force,” which is called into play upon the disturbance of
the body from that given position. Nothing can be more natural,
and nothing more convenient, than to identify this righting force
with the stability which it produces, and thus to designate the
righting force at any angle of inclination (within the range of its
operation) the “stability” at that angle. It is of no consequence
whether the angle of inclination be small or great, provided the
tendency throughout the inclination always is to restore the body
to the given original position of equilibrium. Thus far all is clear,
and no objection need, we think, be taken to the current use of the
word stability to signify the righting force throughout this range.
Supposing, however, the inclination of the body to be carried so
far that the righting force disappears, and then continued farther
still until a new position of stable equilibrium is reached, we shall
now have a new righting force coming into play, of the same kind,
and acting in the same direction as before; but it is manifest that
we can no longer speak of this force as representing the “stability,”
except on the clear condition that we now refer the word, and the
thing, to the second position of equilibrium, and not to the first
position. Now Professor Osborne Reynolds is perfectly correct in
pointing out that this most essential distinction has not been always
observed, and that, in speaking of ships, mere righting force acting
in a given direction, has been spoken of as stability without any
plain and rigid reference to the position of equilibrium, to which,
and to which alone, it has relation. It is easy to see how this has
been brought about. The practice of investigating the stability of
ships at large angles of inclination has sprung up in quite recent
years; and in ships of ordinary type, and in ordinary conditions,
the positive righting force, or stability, which has been found to
exist, has always had reference to the upright position of the ship,
and the word stability has been, therefore, freely used to express the
force turning the ship fowards that upright position. Recent events
have, however, brought to light the fact—which had not previously
been observed—that actual ships (no less than such prismatic bodies
as Atwood and other writers have considered) sometimes, in some

* The following observations are taken mainly from an article contributed by the
Author to the Contemporary Review for November, 1883.
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exceptional conditions, are characterised by the fact that the righting
force, tending to return the body “towards” its upright position,
either did not exist, or else disappeared at comparatively small
angles of inclination; and, after a phase of instability had been
passed through, reappeared again while the angle of inclination was
still within reasonable limits. In the case of a prismatic body
25 feet square in section, immersed 5 feet, and having its centre of .
gravity 1 foot above its centre of form, very small instability exists
up to about 20 degrees of angle, a series of capsizing forces operating
up to that inclination; then a position of stable equilibrium is
reached, and there commences (as the body is further inclined) a
righting force of small amount, acting, of course, in the opposite
direction to those which have been capsizing the body, and, there-
fore, tending to return the body towards the upright position, but
only so far towards it as to reach the second position of equilibrium
—viz, that at which the body floats inclined at an angle of
20 degrees from the upright ; thus it is very easy to see how these
later righting forces happen to have been spoken of as so much
stability, seeing that they oppose and overcome the further cap-
sizing of the body ; but it is equally easy to see that, as Professor
Reynolds has pointed out, the stability so spoken of is not stability
at all in the sense of restoring the body fo its erect position, but is
so only in the sense of restoring the body fowards that position.
That which is true of the prism spoken of may be, under suitable
conditions, equally true of a ship ; and, we have now to add, is true
(not quantitatively, but characteristically) of very many large and
fine ships of modern type; and, being true, gives rise to some grave
accidents, and to many more anxieties and apprehensions. Such
vessels, when in the condition described, refuse to float upright, but
loll over, if allowed, to whatever angle it happens to be at which
they find a position of stable equilibrium.

It becomes important to point out that no danger is necessarily
involved in a ship, under some conditions, having to lie over to even
a considerable angle in search of a position of rest. A ship may lie
in harbour or in dock just as safely at 12 or 15 or 20 degrees from
the upright as in an upright position ; nay, if the inclined position
be one beyond which the righting forces become great, she may
even be safer than some other vessel which has stability in the
upright position, but the stability of which may be small in
amount or in range. We may even go further than this, and state
with perfect confidence, that some ships which have little or no
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stability in the upright position, but which gather large stability
as they incline, and go on increasing it up to very large inclinations,
may be safer, very much safer, in storms at sea than some other
ships which have considerable stability near the upright, but lose it
as the inclination becomes great. On the other hand, it requires no
special skill or judgment to see that when ships are, in any given
condition of stowage, incapable of standing upright or nearly so,
and are liable to loll about with small changes of weight, they are,
in fact, exposed to classes of risk from which they would otherwise
be free. We had a striking instance of this some time ago, in the
case of the Austral. In the state of her cargo, stowage, &c., on the
night of her sinking, she was exposed to a danger from which a
ship endowed with large initial stability under like stowage would
have been free. A moderate quantity of coal put on board through
her starboard ports sufficed to bring one of her coaling ports under
water. The sea poured in, and, further inclining her, brought
another and somewhat higher port under the surface; and a com-
paratively short time sufficed to sink, in this manner, a splendid
ship. It is perfectly true that there were many ways of preventing
the catastrophe. Water-ballast might have been let in to increase
the stability ; the coaling ports might have been closed as they
came near the water's surface ; the coaling-lighter might have been
shifted in good time to the opposite side of the ship. But nome of
these things was done, and the ship was sunk. The owners appear
to have been very careful and painstaking in framing their orders,
and to have understood their ship quite well. The probability is
that had their orders been strictly obeyed the accident would not
have happened. But the fact remains that the ship was sunk, and
that she was so sunk from those in charge of her either not under-
standing how to handle her, or not taking all the means necessary
for handling her properly. The case is mentioned here only because
it seems to illustrate in a remarkable manner the fact that the care
in handling which modern ships receive is not equal to their
requirements; and that one of two things, probably both, ought
to happen—either ships should be built so as to possess greater
stability, when discharging and loading, than some of the finest of
them now possess, or else the competence of those who have charge
of them should be better seen to,
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A TREATISE

ON

THE STABILITY OF SHIPS.

CHAPTER 1L

Primary Conditions of Flotation and Stability—Stability of Submarine Vessels—
Stable and Unstable Equilibrinm—Stability of Partially-Immersed Bodies—
Indifferent or Neutral Equilibrium—The Metacentre—Stability of a Homo-
geneous Cylinder with its Axis Horizontal —Curve of Flotation—Surface of
Flotation—Curve of Buoyancy—Surface of Buoyancy—Stability of a Cylinder
which is not Homogeneous—Curves of Stability—Double Branch Curves of
Stability—Stability of Homogeneous Prisms of Square Section.

ANY body placed freely in still water, or in any other fluid at rest,
will sink if its weight exceed the weight of the fluid which it
displaces. If its weight be less than that of the fluid which it
would displace if wholly immersed, it will float with only a portion
of it immersed. If its weight be exactly equal to the weight of
the fluid which it displaces when wholly immersed, it will become
wholly immersed.

The first case—that of a body which sinks—needs no special
consideration here, although it must be acknowledged that it is not
wholly devoid of occasional practical interest.®

In the last case—that of a body whose weight and displace-
ment are equal when it is wholly immersed—which has sometimes
to be dealt with in connection with submarine vessels, the position
which the body will assume, and in which it will remain, will be
determined by the relative positions of the body’s centre of dis-
placement and its centre of gravity.

If the body in this case be homogeneous throughout, its centre
of gravity must of necessity be coincident with its centre of dis-
placement; its weight will act downwards, and its buoyancy (which
is equal to, and the effect of the displacement) will act upwards
through the same point. These being the only forces acting upon

* There were incidents connected with the foundering of the Captain, for example,
which required and received some investigation.
1
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the body, there is obviously no force interfering with its equilibrium,
and causing it to revolve about an axis, and it will therefore remain
in any position in which it may happen to be placed.

If the body be not homogeneous throughout, it may nevertheless
happen to have the weights of its parts so disposed as to bring its
centre of gravity into coincidence with its centre of displacement,
when the condition of undisturbed equilibrium in any position just
described will still hold.

If the body be not homogeneous, and if its centre of gravity be
not coincident with its centre of displacement, it will not remain
freely at rest, but will turn more or less round, unless and until
its centre of gravity comes vertically under its centre of displace-
ment. For in every other position it is obvious that it will be
subject to two vertical forces acting in different vertical lines, and
these will constitute what is known in mechanies as a “couple,”
and will turn the body round.

For example, if the accompanying diagram, Fig. 1, represent
a submarine vessel equal in
total weight to the water
==————=——=—===——— which it displaces, D being the
centre of its displacement, and
G its centre of gravity, and if
G Z be drawn at right angles
to the vertical lines, D B and
GC, along which the buoyancy
acts upwards and the gravity
downwards respectively, it is
manifest that these two forces
must tend to turn the body
with a leverage proportional
to GZ; D will rise or G will
descend, or more strictly, both these movements will occur; and
as they take place, G Z will shorten until D comes vertically over G,
when it (G'Z) will disappear.

The forces of gravity and buoyancy will then neutralise each
other and the vessel will remain at rest.

This condition of equilibrium and rest would equally exist if
D should be placed vertically beneath G; but on the slightest
disturbance of the vessel from its position, the upward tendency
of the buoyancy acting through D, and the downward tendency
of the gravity acting through G, would be free to take effect,
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and the vessel would turn round until G had placed itself vertically
beneath D. Should a slight temporary disturbance produced by
some external cause now occur, the vessel would return as soon as
free to this position, with G beneath D. In this position the
equilibrium would, therefore, be what is called stable; whereas
the equilibrium, which, as we have just seen, might exist when G
was situated vertically over D, would be unstable, the vessel on the
slightest disturbance abandoning that latter position, and moving
round till the position of stable equilibrium was reached.

It is necessary to include positions of unstable equilibrium within
the view of our investigations, because in them the mathematical
conditions of equilibrium are fulfilled, and because it is impossible tg
investigate the stability of many modern ships without giving
careful consideration to the amount and range of their instability.

The case of a body less in weight than the fluid which it would
displace if wholly immersed, and which, therefore, floats partially
immersed, is that which chiefly claims our attention, and which we
proceed to consider.

If the body be homogeneous it is obvious that its centre of
gravity will be situated higher than its centre of displacement,
because the displacement is wholly below the water’s surface, while
part of the weight is above that surface. But it does not by any
means follow in this case (as it did in that of the wholly immersed
body), that the equilibrium resulting from the centre of gravity
being vertically over the centre of buoyancy will necessarily be
unstable ; on the contrary, the centre of gravity will usually be
higher than the centre of buoyancy in ships of ordinary form and
character, and we, therefore, see thus early that vessels wholly
immersed, and those but partially immersed, are under very different
conditions as regards stability.

Instead of entering at this stage of our subject upon any general
investigation of the stability of a floating body, it may be well to
lead up to such an investigation by considering the conditions
which hold in the cases of certain bodies of forms simpler than
those of ordinary ships; such, for example, as cylinders and
prismatic bodies of various sections, observing that for all pris-
matic bodies their lengths may be left out of consideration, as the
stability of every unit of length will necessarily be the same, and it
is only necessary to attribute to them sufficient length for the
purpose when it is desired that they shall be supposed to float with
their longitudinal axes horizontal.,
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And first, let us take what is perhaps the simplest case of all,
viz., that of a homogeneous cylinder circular in section. A moment’s
consideration will show that, whatever be the degree of immersion
of this body, every position will be one of equilibrium, because the
centre of gravity will always be in the centre of form, and the
centre of buoyancy will necessarily be always beneath it, as the
immersed section is symmetrical about a vertical line through the
centre of form. If moved round from a position of equilibrium
through any angle, large or small, into a new position, the centre
of buoyancy will still be vertically beneath the centre of gravity,
and there will consequently be no force operating either to diminish
or to increase the rotation. This state of things introduces us to a
third kind of equilibrium, which is known as indifferent or neutral
equilibrium.

Before leaving this simple case of the cylinder, let us take note
of the fact that in every position the upward force of buoyancy is
directed through the centre of the body, so that successive inter-
sections of such lines of upward force are concentrated in this one
point—which we shall afterwards see to be the “metacentre,” and
the only metacentre of this particular body, the word “ metacentre”
being here employed in its original and legitimate sense, viz., as
signifying the point above which the centre of gravity cannot be
raised compatibly with stable equilibrium. This point is also in
the present instance the centre of gravity, as it is the centre of the
homogeneous body.

The water-line at which the body floats may be at any depth
less than the diameter, and if the body be caused to make a
complete rotation through 360°, its successive water-lines situated
indefinitely near to each other,
will successively touch a circle
described about the centre of the
body, with the distance between
= that centre and the middle point
of the water-line as a radius.
Let WCL in the accompanying
diagram, Fig. 2, representinsection
such a floating body, immersed
we will suppose, to the water-
line, WFL. LetM be the centre
of form, and it will also be, as we
have said, the metacentre and the centre of gravity likewise,
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always remaining at a fixed distance below the surface. De-
scribe the circle FF’ about M with the radius MF, and this
circle will obviously come to the surface, point by point, as the
body rotates. Coming thus to the surface, and always therefore
baving a point coincident with the water-line, or line of flotation, it
is called the “curve of flotation” for this body; and if the length of
the body be taken into consideration, the point, of course, corresponds
to a straight line, and the curve of flotation to a cylindrical surface
(of which the curve is a section), this surface being designated the
“surface of flotation.” It is manifest that all the water-lines are
tangents to the curve of flotation, and all the water-planes are
tangents to the surface of flotation. Further, if B be the centre of
buoyancy in Fig. 2, let us describe the circle BB’ about M with
the radius MB. A moment’s reflection will show that as the body
is rotated, as before, each point of this circle BB’ must become in
succession the centre of buoyancy, because that centre must always
in this case lie at one uniform distance below the water's surface;
and as M must do the same, the distance of the centre of buoyancy
below M must be constant. In other words, the points in BB/,
the locus of the centres of buoyancy, must lie in a circle around
M as stated. The circle BB’ is therefore called the curve of the
centres of buoyancy, or more briefly the “curve of buoyancy;” and,
length being again considered, the cylindrical surface of which this
is the section is known as the “surface of buoyancy.”

Owing to the simplicity of the figures which we are here con-
sidering, these “curves” of flotation and buoyancy happen to be
circles; but, as we shall see hereafter, these are very special cases
only, and generally we shall find them of more complex curvatures.

Fig.3. Fig. 4.

It is scarcely necessary to add that in the instance we have been
considering, the only effect that would result from increasing or
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diminishing the draught of water of the cylindrical or spherical body
(all the time it remains homogeneous) would be to vary the sizes of
the circles BB’ and FF’. As the body becomes more immersed,
the circle F F’ is enlarged, and the circle BB’ is reduced in diameter,
until, when the body is almost wholly immersed, F F’ lies close to
the circumference WCL, and BB’ is almost reduced to the point
M, asin Fig. 3. When the body is but very slightly immersed, the
circles FF' and BB’ become almost coincident with W CL—see
Fig. 4; and when the body is just half immersed (being one-half
the specific gravity of water) the curve or circle of flotation becomes
a point coincident with M, the circle BB’ having a radius of
;'—:_l. where d is the diameter of the section, 4'—3 being the distance
down of the centre (or centre of gravity) of the immersed semi-circle
from the water-line.

Let us next consider the case of a cylinder of circular section
which is not homogeneous, and which has its centre of gravity
situated in some point other than the centre of form, as in Fig. 5,

) in which G represents the centre
Fig5. of gravity, and WL the water-line.

\ In this case all those elements
z which depend solely upon form
u

will be the same as in the last
case for corresponding immersions,
and therefore M, the centre of
form, will be the metacentre as
before, and the curves of flotation
and buoyancy will also remain as
before for any given immersion.
But the condition of the body as regards equilibrium and stability
will be very different.

If the body be first floated in the position shown in Fig. 5, with
the centre of gravity, G, situated vertically below the metacentre,
M, and if an inclining or rotating force be now applied, it obviously
cannot take effect and turn the body round, without raising the
centre of gravity, G, nearer to the water’s surface; if this be done,
and if the angular motion be less than 180°, and the body be now
left free, the centre of gravity, being left unsupported, will fall back
again into the position shown. This, therefore, is a position of

* The Greek letter pi (x) is used to denote the ratio of the circumference of a
circle to its diameter, which is expressed by the quantity 3:14159..., that being the
circumference of a circle whose diameter is 1.
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CHAP. 1.] NON-HOMOGENEOUS CYLINDERS, 7

stable equilibrium. If the body be turned round through 180°,
and the centre of gravity be thus brought vertically over the
metacentre, M, the forces of the buoyancy and gravity will again
be in equilibrium, but the equilibrium will now be unstable, and on
the slightest disturbance (which could not, in practice, be avoided)
G would again fall into the position shown in Fig. 5. There
obviously is no other position of equilibrium besides the two just
mentioned, and but one of them is a position of stable equilibrium.
This is true wherever the point, G, may be situated between M
and the circamference of the body ; but the leverage with which the
body will be urged back to the position of stable equilibrium, after
having been moved out of it, will be materially influenced by the
position of the centre of gravity. If G be very near to M, that
leverage will be proportionately small; but if G be very near the
circumference, it will be proportionately great. Let G’ and G”,
Fig. 5, illustrate these positions of the centres of gravity respectively
when the body has been turned round through 90°. 1In the former
case, the weight of the body, tending to turn it back round M, will
act with the small leverage, G'M, and in the latter case with the
large leverage, G’ M; and the righting moment will be proportionate
in each case to the leverage. This moment, thus depending only on
the weight of the body and the distance, M G, will be the same,
whatever the immersion (although immersion and weight are
themselves of course practically related), but will vary with every
change of angle. It is easy to see, from Fig. 6, what the righting
moment must be for any given’
position of G, and at any given Fig.e6.
angle of inclination. The buoy-
ancy acts upwards through B and
M, the gravity acts downwards
through G, and these forces are
equal ; they therefore constitute
a “couple,” the arm of which is
GZ, GZ being drawn from G at
right angles to BC. It will be
seen that GZ = GM sin. 6, if 0
be the angle of inclination from
the upright position. Starting from nothing, when G is beneath M,
the righting moment therefore gradually increases in this instance
up to 90°, when it reaches a maximum, and is there equal to the
weight of the body multiplied by the distance of the centre of
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gravity from the centre of the body ; it then diminishes with further
inclinations, and vanishes at 180°, when G comes vertically over M.
From 180° to 360° it will clearly pass through phases the reverse of
those previously passed through, for it matters not whether the
motion be continued from 180° or reversed. By giving any required
values to the weight, to GM, and to the angle of inclination, the
righting moment under all possible circumstances can be determined.
Having now before us a case, however simple, of varying stability,
and exhibiting variations of righting force under different conditions,
it will be well to observe that these variations may be conveniently
illustrated graphically in the form of a “Curve of Stability.” The
instance before us is so elementary, and so easily understood without
graphic aid, that it would not be worth while, for the immediate
purpose only, to further discuss it ; but the principle involved in the
construction of curves of stability (or, more correctly, “curves of
righting forces”) is always the same, and general principles are
often most easily and effectively illustrated by elementary examples.
We will, therefore, take as a first example the case shown in
Fig. 6, and assume the centre of gravity, G, to be one-half the
radius from M, so that MG is equal to one-fourth the diameter
of the floating cylinder. Now we can take either of two measures
of righting force, a8 we please, for we can either take the length,
G Z, at each angle, which we may call the righting “lever;” or
we can take the length of that lever multiplied by the weight
of the floating body, which we can call the righting “moment;”
and it is obvious that the series of results obtained will differ
only in being the one a fixed multiple of the other. Let us
leave the weight out of consideration, and deal with the righting
levers only. These will be represented at every angle of inclina-
tion by the length of GZ at that angle, and we may presume
these to be ascerteined at a series of positions as numerous as
we please; for example, at intervals of 10°. This would give
us 36 different lengths of G Z for the full rotation of 360°, or 18
positions for each 180° of inclination. Our object is to exhibit
graphically the variations of G Z, and that may best be done by
setting them all off from one base-line, A B, Fig. 7, which we
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CHAP. 1.] CURVES OF STABILITY. 9

will take to represent by its length the 360° of angle. Dividing
this line into 36 parts, we may then set up as an ordinate at
each of the points so obtained the length of G Z, corresponding
to the inclination, and through the extremities of the ordinates
so obtained draw a curved line, CC, Fig. 7. With this curve
before us we have the means of ascertaining by simple measure-
ments the length of the righting lever at any angle of inclination
whatever. An inspection of the curve shows that regarding the
upright position, with G beneath M, as the starting position,
indicated by A, as the body is by external force inclined as the
arrow indicates, a righting lever comes into play, and increases
until an angle of 90° is reached, there attaining a maximum;
beyond 90° the righting lever still exists, but it now begins to
diminish in amount until an angle of 180° is reached, where the
righting ordinate vanishes, the curve there crossing the base-
line. At this point G is above M ; there is therefore equilibrium,
but it is unstable. Beyond 180° the curve falls below the base-
line, and remains there till 360° of inclination is reached, or in
other words, till the original upright position is resumed, the
ordinates varying in length exactly as they varied above the
base-line during the first 180° of inclination. These ordinates
being now (from 180° to 360°) always below the base-line, or
megative in amount, signify that the effect of the inclining lever
is now, not to turn the body back to its original position by
reversing its motion, but to further rotate the body in the direc-
tion in which it has been forcibly moved, or in other words to
completely capsize it. This curve represents, therefore, the stability
(or instability as the case may be) of the vessel, and has come to
be called—somewhat loosely, but too generally now to be altered—
the “ curve of stability ” of the body in question.

This curve will always be of the same type as in Fig. 7 (for
an unbalanced circular cylinder floating with its axis horizontal),
whatever be the position of G in the body. The curve will
always reach its maximum at 90°, always cross the base-line at
180°, always reach its megative maximum, so to speak, at 270°,
and always come to the base-line again at 360°. But the ordinates
of the curve will obviously decrease in length as the centre of
gravity of the body is placed nearer and nearer the centre of
form, and increase in length as it recedes from that centre, since
for any given angle whatever G Z of necessity varies directly
with G M. The largest righting lever that such a body as this
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can have is obtained when the centre of gravity is in the circum-
ference (as we may for a moment imagine it to be), and the body
is inclined at 90° from the upright. The righting lever is then
equal to the radius, and this is true whatever be the degree of
immersion of the body. The righting moment will also be the
greatest with the centre of gravity in the circumference, but in
this case the weight of the body must also be at a maximum,
which it will be when it just, and only just, floats.

We thus see that this simple form of body offers to us the
means of constructing & whole series of curves of stability, all
following a given law, but differing with every change of position
of the centre of gravity. The law by which the ordinates will
vary in the respective curves is simple enough, for they will be
in each curve directly proportional to GM. As GM gets small
all the ordinates of the curve will diminish, and the curve itself
will be ultimately merged in the base-line. In Fig. 8 are shown

four different curves of stability—which are here curves of upright-
ing and inclining levers —corresponding to the following four
positions of the centre of gravity, viz, when GM is equal to
one-fourth, one-half, and three-fourths of the radius of the body
respectively, and also when it equals the radius itself The
ordinates are of course in these proportions to each other.

The reader who is considering this subject for the first time
must be careful to bear in mind that in framing the above curves
of righting levers, it has been assumed that the body has been
inclined always in one direction, viz.,, that indicated by the arrow
in Fig. 6. It will be clearly seen that had the body been rotated
in the opposite direction precisely similar curves would have been
obtained. But those who are unaccustomed to such curves often
experience a difficulty in understanding them from the fact that,
as usually constructed they do not exhibit to the eye that which
it seems natural to expect, viz.,, curves that are symmetrical on
either side of the upright position and on either side of other
positions of equilibrium. If we take Fig. 7, for example, we know
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that in the upright positions, at A and B, the stability of the
body is the same whether we incline it to the right or to the
left, but the curve of stability (if continued far enough), rises
on the right of each of these points with positive ordinates, and
descends on the left of them with negative ordinates. The explana-
tion is simple enough, viz., that the curve is constructed on the
assumption that the rotation takes place in one direction only,
and that motion in the opposite direction is provided for by
simply changing the sign of the ordinates—making negatives
positive and positives negative.

But it will greatly facilitate the ready comprehension of these
curves by amateurs and students if we give to them two equal
branches—the branch to the right representing the righting levers
(or “moments,” as the case may be) when the top of the floating
body is inclined to the right, and the branch to the left representing
the levers when the top of the body is inclined to the left. These
two branches will usually be precisely alike for ships, and one of
them will, therefore, be superfluous for purposes of calculation; but
the second branch will be very far from superfluous to many
persons among whom it is desirable to diffuse a sound knowledge
of the stability of ships. Applying this method to the curves in
Fig. 8, and contenting ourselves with seeing the body capsize (or
lose all stability) to right and to left (which happens at 180° in this
case), the curves will assume the graphic form of Fig. 9. In referring
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to curves so constructed, it will always be understood that ordinates
above the line will be 7ighting ordinates tending to return the body
to the position from which it was started, until the curve first crosses
the base-line, either to the right or to the left. The ordinates, then
falling below the base-line, are capsizing ordinates, tending to con-
tinue the inclination previously given to the body.

Owing to the speclal condition of the cylindrical body thus far
under consideration, in which positive ordinates do not reappear until
the body has made a complete rotation, it is undesirable to pursue
this branch of the subject further at present; but hereafter we
shall have cases to consider in which positive ordinates reappear at



12 STABILITY OF SHIPS. [cHAP. 1.

much smaller angles, and then we shall take occasion to show
that although their reappearance signifies the reversal of the
capsizing forces, it does not signify any tendency on the part of the
floating body to return to the upright position.

We have seen that the cylindrical body has but one position of
stable equilibrium wherever its centre of gravity may be situated.
It is easy to show that this is the case by other than graphic means.
It is obvious, for example—in fact we bave already seen—that
whenever the centre of gravity is not situated in the centre of the
body, the moment of the weight about M, at any given angle 6, is
WxMGxsin. 0 (see Fig. 6). All the time this moment has a
finite value there is a turning force in operation, and the body can-
not be in a state of equilibrium. When equilibrium exists this
moment must vanish. Now it can only vanish, under the condition
supposed, by sin. 8 vanishing, and this can only be when 6=0, or
6=180°. When 0=180°, the centre of gravity is above the meta-
centre, and the equilibrium is therefore unstable. The upright
position when 6=0 alone remains, and this, therefore, is the only
position of stable equilibrium.

In the cylindrical bodies which we have thus far been consider-
ing, the resultant upward pressure of the buoyancy always acts
through the centre of the cylindrical section for reasons which are
obvious, or which the most elementary knowledge of hydrostatics
makes clear. If we now pass to bodies of almost equal simplicity of
form—viz., prismatic bodies with parallel sides, and suppose them to
be of square section, we shall find that the change from the circular
section to the square, simple as it may appear, involves very
different conditions of stability.

Fig.11.

Fig.10.
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First, let us consider the case of homogeneous prisms of square sec-
tion, and let us commence with a body one-half the weight of water,
and, therefore, floating with one-half its volume immersed. We will
place this body first in the position shown in Fig. 10, with its sides
vertical and horizontal. This will be a position of equilibrinm,
because both its centre of gravity, G, and its centre of buoyancy, B,
will lie in the vertical line, G C, and there is consequently no force
tending to rotate the body. We will place the body next in the
position shown in Fig. 11, with its diagonals horizontal and vertical
respectively. This will also be a position of equilibrium, because
both the centre of gravity, G, and its centre of buoyancy, B/, will lie
in the vertical line, GC. We will finally place the body, as in
Fig. 12, in a position intermediate Pig.12.
between Figs. 10 and 11, and con-
sider how it is situated. As com-
pared with its situation in Fig. 10,
the following changes will have
happened :—Instead of the water-
line, WL, it will now (Fig. 12)
have a new water-line, W L' ; and
instead of the centre of buoyancy,
B, it will have some new centre of
buoyancy, B. B’ will obviously lie
to the right of B, because the body has been more immersed on that
side by the inclination, the triangle, L' G L, having been newly
immersed on the right side, and the triangle, W G W', having been
taken out of the water on the left side. The upward pressure of
buoyancy will act through B, and, when the angle of inclination is
exceedingly small, its line of action will, in this case, intersect G C at
apoint, M, below G, as may be ascertained either by geometrical con-
struction or by calculation. This point, M, is the metacentre, being,
as we see, the intersection of two verticals through two centres of
buoyancy lying extremely near to each other, and corresponding,
of course, to two positions of the body which differ only by a very
slight angle of inclination, one of the two being a position of
equilibrium.
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CHAPTER IL

Fuller Consideration of the Metacentre—Bouguer’s Original Use of the Word—Its
Precise Signification—Bouguer's ¢ Metacentric” (Métacentrique}—His Error
regarding it—True Character and Properties of the Metacentric—Pro-Meta-
centres—The Metacentric & Loocus of Metacentres and Pro-Metacentres—The
Metacentrio an Evolute of which the Curve of Buoyancy is the Involute—The
so-called “Shifting Metacentre”—Modern French Usage: *‘Initial Metacentre”
and Metacentre—Rules of M. Reech stated by M. Bertin—Ascending and
Descending Metacentrics—Examples of Simultaneous Descent of Metacentric
and Increase of Stability—Distinction between ‘‘Curve of Metacentres” and
¢ Metacentric Curve.”

'WE have now arrived at a point in our inquiries when it has become
necessary to consider somewhat fully the term “metacentre.”

The French investigator, Bouguer, nearly a century and a-half
ago,* introduced the word metacentre into the nomenclature of naval -
science. He employed it with specific reference to a ship floating
freely in an upright position, and for the specific purpose of indi-
cating that point in the vertical axis of the ship beyond which her
centre of gravity could not be raised without inclining the ship.

All the time the centre of gravity (which we presume to be in
the vertical axis) is situated below the metacentre, the ship will
tend to remain upright, and to return to the upright if slightly dis-
turbed, because as soon as she is inclined a little either to the right
side or to the left, the buoyancy moves out towards that side, and
the upward vertical thrust of the buoyancy, acting through the néw
centre of buoyancy, tends to push her back to the upright position.

If the centre of gravity be raised to exactly the same height as
the metacentre, and the ship be now slightly inclined either way, the
upward thrust of the buoyancy and the downward drag of gravity
will both pass through the same point, and no further motion
need therefore ensue; the ship will, consequently, be in neutral
equilibrium, and if put back to the upright, will remain there. But
if the centre of gravity be raised above the metacentre, then, on a

* In his famous 7'raité du Navire, published in 1746,
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slight disturbance of the ship, the upward vertical thrust of the
buoyancy will not resist the downward drag of the gravity, but
will co-operate with it, and further incline the ship. We have here,
then, a clear and precise signification of the word “metacentre,” *
and we know that it is its original and true meaning.

But Bouguer went a step farther: the metacentre being, as we
have seen, the point at which a vertical through a centre of
buoyancy, closely adjacent to the original centre of buoyancy, cuts -
the originally upright axis, Bouguer saw that if the ship were a
little further inclined, two verticals through closely-adjacent centres
of buoyancy might not, and often would not, intersect at the same
point of the originally-upright axis, or in that axis at all, but would
intersect at some point lying a little aside from that axis, and, with
ships of usual form and condition, would be situated a little higher
than the metacentre. If the ship were inclined a little further still,
the point of intersection of similar verticals through adjacent centres of
buoyancy would usually be a little higher up still, and a little further
aside from the axis, and so forth. This is illustrated in Fig. 13 (next
page), in which a curved line is drawn through the metacentre,
M, and through successive intersections of such verticals, at M,, M,,
and M;. This curved line Bouguer called the “metacentric” (méta-
cenirique), and it is manifestly the locus of the intersections of
successive verticals through adjacent centres of buoyancy, corres-
ponding to successive small inclinations of the ship from the
upright.

Bouguer made the mistake of supposing that the rise of the
metacentric above the metacentre, or its fall below it, indicated
increase or decrease respectively of the righting force or stability;
and many writers since have made the same mistake, some of them
still repeating it. But it really does nothing of the kind, as Atwood
showed at the end of the last century, and as we shall abundantly
show hereafter.

It will easily be seen, if we keep the ship still in mind (and
with a ship in an upright position Bouguer started), that the points,
M, M, M, &c, are not metacentres (although they have lately
come to be very frequently spoken of as such) in Bouguer’s own

® «“The point so found he calls the metacentre, as it appears to some instructed
persons, from its being the meta, limit or goal beyond which the ship’s centre of
gravity may not rise. It is to be regretted that Bouguer only hints at the derivation
of the word. Another derivation, from the Greek méta, signifying change, and kenéron,

centre, does not materially differ from this, provided we understand the centre to be
the ship’s centre of gravity.”—Naval Science, vol. iii., p. 439, 1874,
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sense of the term, not being in the original upright axis at all, and
therefore being incapable, in a ship so loaded as to float upright,
of fixing & limit in that axis above which the centre of gravity
cannot be raised. Of course if we dismiss the idea of a ship, and
have regard only to that of any floating body whatever, and suppose
that its centre of gravity can be shifted about just as we please (as
Dupin afterwards did for his general investigation), we are then
at liberty to assume any axis of buoyancy, or line of action of
buoyancy, as indicating for the moment the upright axis of the
floating body, and in that case any such point as M,, M,, &c, may
be regarded as the metacentre for the time being. But however
useful such artifices as this may be for the purpose of determining
general principles, we must be most careful not to regard such points
as M, M, &c., as the metacentres of any ordinary ship, yacht, barge,
floating dock, or any other like body with which we may have
practically to do,—unless, indeed, it should be made perfectly clear
that they have reference solely to some specified inclined position of
. the ship.

It may be well, however, here to point out that each of these
points, of which the metacentric is the locus, has a property of
considerable importance, for it is the centre of curvature of the
curve of buoyancy at the corresponding point of it. We saw in the
last chapter that the curve of buoyancy is the locus of the centres
of buoyancy, and we have just seen that the metacentric is the locus
of the intersections of adjacent verticals through neighbouring
centres of buoyancy. Each point in the metacentric will therefore
be related to a corresponding point in the curve of buoyancy, and if
we join these two corresponding points by a straight line, this line
will be at right angles to the curve of buoyancy (i.c., to its tangent)
at that point, and will be also its radius of curvature at that point.
In Fig. 13, for illustration, M B is the radius of curvature of the curve

Fig.13. of buoyancy, .B, B, B, &c.,

at B; M, B, is the radius

Miv, 9f curv.ature at B;; M, B,

o \ its radius at .B,, and so

L o L, forth. And this being the

= B?/,,’ = case, the curve, M, M,, M,

2 &c.—it may be mentioned
ok in passing—is the evolufe
\_ ) ofthe curve, B, B,, B, &,

which is therefore its in-
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volute. If we suppose a string to be led round a rigid curve,
M, M, M, and M, and carried down to B, and this string then to
be kept stretched and carried outwards from B, the point of the
string which touched B will now trace out the curve, B B, B,, &c.

It would be well if we could avail ourselves of this property
in giving a new name to such poinis as-M;, M,, &c., which we
might define, and which have been defined as “ centres of curvature
of the curve of buoyancy,” but this designation is wuch too
cumbrous for ordinary and frequent use. We certainly need a
name for them; they are not “metacentres,” save in a very
strained, misleading, and wholly exceptional sense; and yet we
shall have frequently to speak of them. As we cannot find for
them, as we should like to do, a designation that is both specific
and characteristic, we shall content ourselves with calling them
“ pro-metacentres,” and hereafter, when we speak of a “pro-
metacentre,” we shall signify by that word a point on the meta-
centric; or, what is the same thing, a point on the cvolute of
the curve of buoyancy; or, what is still the same thing, a centre
of curvature of the curve of buoyancy. An example of an isolated
“ pro-metacentre ” is given in Fig. 14. A floating prism of square
section is there shown with _
the axis, A C, inclined at an Fig14
angle of about 30° from the
upright; B is its centre of
buoyancy, when W Lis its
water-line. By giving the
body a very slight inclination
either wayfrom this position,
it will have a new centre of
buoyancy given to it. If
we incline it one way b will
indicate this; if we incline
it the other way &' will in-
dicate it; and for each of these positions there will be a new line
of upward action of the buoyancy. These lines of action, together
with that through B, will all meet or intersect in one point, M,
and this point will be the pro-metacentre.

The word “metacentre,” qualified by the adjective *shifting,”
has sometimes been used in this country to signify the intersection
of the vertical line of upward action of the buoyancy, when the
ship is inclined at any considerable angle with the axis of the

2
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ship which was vertical when she floated upright. It can hardly
be said, indeed it cannot be said, that the so-called “shifting meta-
centre ” is any metacentre at all in the original sense of the word,
because it really has nothing to do with limiting the height to
which the centre of gravity can be raised without disturbing the
upright position of the ship. But on the other hand it does indicate
a point in the ship’s axis of symmetry, above which the centre of
gravity cannot be raised without inclining the ship beyond the
given angle which determimes 4t, and this doubtless is why it
was designated the. “shifting metacentre.” It is obviously a point
that usually would shift as the angle of inclination became altered.
But although the term has this measure of justification, its use is
not very desirable, and is indeed likely, unless great care is taken,
to introduce misconceptions into the subject.*

In France, nevertheless, the modern usage is to treat the
metacentre proper as the “initial metacentre,” and to regard as
metacentres the points which we have above seen defined as
“shifting metacentres.” From a reply which that distinguished in-
vestigator, Mons. L. Emile Bertin, of Brest, has been good enough to
make to an inquiry of mine on this point, I find that in his opinion,
although the diverse acceptations given to the word metacentre at
different periods or in different countries have thrown the subject
into some confusion, the terminology adopted throughout France
for many years past has been such as to leave no room for diffi-
culties of interpretation. ~ “The rules followed,” says M. Bertin
(whom we translate freely), “which, if they are no older, were
certainly employed about 1840 by M. Reech, at the Ecole du Génie
Maritime, are the following :—

“Let C, Fig. 15, be the centre of buoyancy of the upright ship,
C, the centre of buoyancy for any inclination whatever, CM, C,,
equal to O; then the point, M,, at which the direction of the
upward thrust of buoyancy through C, cuts the axis CG, is the
metacentre corresponding to the inclination 6.

* ¢¢We do not remember having met with the term shifting metacentre in any
previous publication, but we may observe it is still applied only to points on the
axis. This term has never appeared to us a happy one, and we have never regarded
it as fixed in the scientific nomenclature of shipbuilding in the same sense as the
term metacentre is. It is, we think, open to the very serious objection that it is
not a metacentre—i.e., a limiting position of the ship’s centre of gravity, in the true
sense of the word, as separating stable from unstable or neutral equilibrium. Itis
very likely to be misunderstood by the unlearned or the sciolist, and scems really to
have misled, &c.”—2XNaval Science, vol. iii., p. 441.




CHAP. 1L] EBROR OF BOUGUER. 19

“In the particular case in which @ is very small, the thrust
of the buoyancy through C, cuts CG at the
point, M, which is the imitial metacenire of i,
the ship. u

“The variable length, C M, is usually denoted ™’
by p; the constant distance, C G, by a, and the
expression for the arm of the lever of the couple
of stability is therefore

(p — @) sin. 6.

F"g-.l-f-.

M

@
The length, p—a, or GM, is the metacentric
height. The very form in which this is written
leaves no room for doubt about the fact that the
metacentre M is situated on the line C G. ¢

“When we prolong the directions C, M,, C, M,, &c., of the succes-
give thrusts of the buoyancy to their own intersections, the point
at which two such lines of action which are infinitely near cut
each other is named simply the centre of curvature of the curve of
centres of buoyancy, or a point of the metacentric evolute. It
sometimes happens that this last appellation is abridged to ‘meta-
centric point ;' that is a fault, because it may lead to confusion, but
it is a simple abbreviation, and an excess of brevity sometimes has
its inconveniences.”

We have already adverted to the error into which Bouguer fell
when he wrote his chapter entitled “ On more extended investiga-
tion on the metacentres, and on the curved line which these points
form when the ship is inclined,” and assumed that where the meta-
centric ascended from the metacentre as the vessel was inclined the
vessel might be regarded as safe against oversetting, and that when
it descended she might be regarded as insecure. Instead of demon-
strating the inaccuracy of this view—to which we shall have
occasion to refer hereafter—we will here give a conclusive and
striking example of the contrary. Fig. 16 illustrates the case of a
prismatic shallow draught vessel of the section shown; M is its
metacentre; My, is its pro-metacentre at 2} degrees of inclination;
and M, M, M,, &c, are its pro-metacentres at inclinations of 5,
10, 20 degrees, &c. Its corresponding centres of buoyancy, B, By,
B,, B, &c, are similarly indicated.

The pro-metacentres are joined to their corresponding centres of
buoyancy by ticked lines (which are radii of curvature), and from
the centre of gravity, G, the levers of stability, GZ,', GZ, GZ,, &e.,
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are drawn perpendicular upon these respective lines as shown.
These levers are employed in forming the curve of stability which
is engraved below the figure. Here we manifestly have the meta-
centric descending, and descending very steeply, almost as soon as
the inclination commences, whereas the stability (instead of diminish-
ing) increases very rapidly, and continues to increase until the vessel
is inclined to about 25 degrees. After that the stability begins to
diminish, but it is still very large, and would remain of substantial
amount until the vessel was inclined nearly on her beam-ends.

One such example is as good as a thousand, so far as the settle-
ment of the question goes, but we have devised the following
example in order to put the simultaneous increase of righting lever
of stability and decrease in height of pro-metacentre (i.e., decrease in
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the radius of curvature of the curve of buoyancy) from the very
commencement of the inclination beyond all doubt. We take two
homogeneous cylinders placed side by side, Fig. 17, combined into

therefore floating one-half immersed, and with the centre of
gravity, G, in the water-line. On inclining this body through any
small angle whatever, it is obvious that the area of its water-line
section (which, as the body is prismatic, is sufficiently represented
by the breadth of the body measured along the new water-line)
must diminish, because whereas the water-line breadth is equal to
two diameters when the body floats upright, the water-line breadth
is only equal to two chords of the circular section when the body is
inclined, and every such chord of a circle is of necessity less than
its diameter. Meantime, the volume immersed will remain the
same, the portion of the one cylinder which is emersed by the
inclination being equal to the portion of the other which becomes
immersed by it, the point G remaining in the water-line, and at its
middle at every possible angle of inclination. With the immersed
volume remaining the same, and the water-line area thus dimin-
ishing from the very beginning of the inclination, and going on
diminishing until an angle of 90° from the upright has been reached,
it follows (for reasons which will appear hereafter) that the radii of
curvatare, B, M,,, B, M,, &c. (corresponding to inclinations of
10°, 20°, &c.) must also continually diminish from the very
beginning, or, in other words, the pro-metacentre continually
descends until 90° of inclination is reached, as shown in the figure.
At that angle the water-line will have diminished to nothing, and
will be coincident with the point G, the pro-metacentre will have
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descended to the centre of the immersed circle; the centre of
buoyancy also will obviously have travelled to, and have become
coincident with, that point. The body will therefore float in
equilibrium, but the equilibrium will be unstable, the centre of
gravity, G, being poised a half-diameter above the metacentre. But
while the pro-metacentre has thus been continually falling, and the
radius of curvature thus continually diminishing, there has always
been a force of stability at work tending to return the body to its
original upright position. In the Fig. 17 the righting levers, GZ,,
GZ,,, &c., are drawn as perpendioulars upon the successive radii of
curvature of the curve of buoyancy B, B,, B,, &c., and a curve of
stability, Fig. 18, has been constructed from them.* It will be

Fig.18.
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seen from both figures that the arm of stability or righting lever
increases up to 40° of inclination or more, and then diminishes
gradually until it disappears at 90° so that from the beginning of
the inclination up to 40° of angle at least we have a steadily
diminishing radius of curvature, and a steadily increasing amount
of righting force.
. Something like a ship-shape may be given to this body (Fig.
17) by supposing it to be furnished with a flat bottom, and decked
over at the top, as indicated in Fig. 19. This will, of course, have

Fig. 19.
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the effect of disturbing some of the symmetries and other condi-
*The dotted line in this figure relates to Fig. 19, as will be presently seen.
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tions of the previous case, and of somewhat diminishing the
stability at every point, as indicated by the light dotted line in
Fig. 18, but the same essential characteristic of the pro-metacentre
falling while the stability increases will still be preserved.

From what has gone before, it will be seen that it is our desire
—and for very good reasons—to limit the application of the word
“metacentre” to those points which are really metacentres, and are
therefore situated in the upright axis of equilibrium, and have
relation to small inclinations only. We retain the term * meta-
centrio ” as descriptive of the locus of “ pro-metacentres,” and as the -
evolute of the curve of buoyancy, but only as such, and not as
implying that, for a given draught of water there is, or can be,
more than one “ metacentre.” This metacentrie has sometimes been
spoken of as a “curve of metacentres,” and as a “ metacentric curve;”
the former it is not; to the latter we can hardly object, becauss if
it be & curve, and be designated the “metacentrio,” it can hardly
be considered wrong, or even irregular, to speak of it as a meta-
centric curve. It will be well, however, to avoid this term as much
as possible in this connection, because, as we shall see hereafter,
there is another curve in common use which is, strictly speaking,
a “curve of metacentres,” and which has also been sometimes called
the metacentric curve, but which is really a curve constructed by
means of true metacentres, for a series of upright positions at
different draughts of water. Although this latter curve, as we
shall hereafter see, is artificially constructed, it is a curve of meta-
centres, and has therefore been called a metacentric curve, although
a wholly different thing from the “metacentric.” If the last-named
term be employed to indicate the locus of the pro-metacentres, and
the other curve (which implies different draughts of water) be
always called the “curve of metacentres,” much confusion may be
avoided. :
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CHAPTER IIL

Further Conditions of Stability of Square Prisms—Relation of Loci of Centres of
Buoyancy and of Pro-Metacentres to Stability—Relation of Height of Centre
of Gravity to Stability—Determination of Position of Metacentres and
Pro-Metacentres—Shift of Centre of Gravity—Expression for the Height of
Metacentre above Centre of Buoyancy—Expression for the Height of Pro-
Metacentre above Centre of Buoyancy—Remarks of Professor Elgar and Mr.
W. John—* Surface Stability”—French Method of Treating Stability—
Description thereof by Mons. Emile L. Bertin—Notes by Mons. V. Daymard
and Mons. Emile L. Bertin.

THE square prism, Fig. 12, is in unstable equilibrium when floating
with its diagonals inclined. The symmetry of the body suggests
that we should place it next with its diagonals nearly upright
Fig.20 and horizontal respectively,
e as in Fig. 20. The centre of
buoyancy when GC was up-
right, was B; now that GC is
slightly inclined it is at b,
and the metacentre M is now
of , situated above G, as shown.
& The equilibrium is therefore

stable in this case.

As the body was rotated
from the position shown in
Fig. 12 to that shown in Fig.
20, with W L for water-line,
it passed through an indefinite
number of intermediate positions, for each of which there was a
corresponding centre of buoyancy and a corresponding pro-meta-
centre. These would compose in each case a curve or locus, as we
have seen. In Fig. 21 are shown the curve of buoyancy, B,, B,, B,
&ec., and the metacentric, or curve of pro-metacentres, M,, M,, M,
&c. These curves are not here limited to correspond to an in-
clination through an angle of 45° only; but are carried on to an

AR
e
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extent corresponding to a complete rotation of the prism through
360°. Regarding the body as upright when in the position shown
in Fig. 21, with I H central and vertical, B, is the corresponding
centre of buoyancy, and M, the metacentre. As the body inclines
in the direction indicated by the arrow, the centre of buoyancy
travels along the curve, B, B,, arriving, so to speak, at B,, when the
diagonal, J K, becomes upright, by which time the pro-metacentre
(starting from M,) has travelled along its curve, M, M,, and has
arrived at M, Continuing the rotation, the centre of buoyancy
and the pro-metacentre travel on, arriving at B; and M, respectively,
when W L has become upright; and so on as the inclination proceeds
until the whole rotation has been completed, the centre of buoyancy
having then passed through the points B, B;, B, B, and B, and

Fig.2L.
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arrived again at B, the pro-metacentre having similarly arrived again
at M,. The symmetry of the curves thus traced out indicates what
the symmetry of the prism makes certain beforehand, viz.—that
the relative positions of the centre of buoyancy and of the pro-meta-
centre, which held when the body was upright, recur whenever the
sides are horizontal ; and the relative positions which held when the
body floated in stable equilibrium with a diagonal vertical, recur
whenever any diagonal becomes vertical.

With the locus of centres of buoyancy, B, B,, &c., and the locus of
pro-metacentres, M, M,, &c., Fig. 21, before him, the reader will easily
see in what relation these stand to the stability, or righting lever,
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at any given angle of inclination. Let him join the centre of
buoyancy and the pro-metacentre, corresponding to any given angle
of inclination, by a straight line (prolonging the line if necessary
till it passes the centre of gravity) and observe on which side of
this line the centre of gravity lies. If it lies to the right of this line
it will turn the upper or unimmersed part of the body to the right;
if it lies to the left of this line it will turn the body in the opposite
direction.

It is not, as Bouguer hastily assumed, a question of whether the
metacentrio rises or falls, but whether the force of buoyancy, acting
through any given centre of buoyancy, passes the centre of gravity
on one side of it or on the other. Whenever the forces of gravity
and buoyancy act in different lines they will produce a turning
movement, and that will turn the floating body in one way.or the
other, according as they act on ome or other side of each other.
When we are dealing with metacentres (lying in axes of equilibrium
of course) the stability or instability. of the equilibrium is deter-
mined by the relative heights of the centres of gravity and the
metacentre; but, when we are dealing with pro-metacentres which
are not metacentres, and which are nothing more than intersections
of adjacent verticals through centres of buoyancy, their heights
relative to the centre of gravity do not usually determine whether
stability or instability exists, or in any way measure the amount of
it. This we saw with reference to Fig. 16; it appears also from
Fig. 22. 1In this figure, which represents the pro-metacentres,
centres of buoyancy, and curve of stability of a square prism
immersed %ths of its depth, M is the metacentre; M; the pro-meta-
centre at an inclination of 5°; M, the pro-metacentre at 10°; and
M, and M, those at 15° and 20° respectively. The pro-metacentre
rises above the metacentre as the body is inclined up to 10° but
then it falls, and falls rapidly, as the inclination proceeds, lying
considerably lower than the metacentre at 15°, and descending to
M, at 20°. It is obvious that if the righting force, or arm of
stability, were proportionate to the height of the pro-metacentre,
there would be a great falling off in it from 10° onwards, because
of this rapid descent of the pro-metacentres. The curve of stability
which is given below the figure shows, however, that if the centre of
gravity be situated at the centre of form this is by no means the
case, for the stability goes on increasing up to 20°. This increase
of stability, as the angle increased, up to 20° would obviously still
hold, proportionally, if G were either raised or lowered.
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In so far as height is concerned, it is the position of the centre
of gravity which really does determine the stability at any large

Ry 22
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angle. This also will readily be seen from Fig. 22, in which the
lines joining the centres of buoyancy with their respective pro-meta-
centres are shown, the ordinates in the curve of stability being the
perpendicular distances of the point, G, from these lines. If we
now suppose the centre of gravity to be situated no longer at G
but at G, it is easy to see that we shall get in G'Z, G'Z, G'Z,
and G'Z, , a new set of stability ordinates, all greater than those
obtained from G; and if we suppose the centre of gravity to be
raised above @, say to G”, it is clear that we shall obtain another
set of ordinates, all less than those obtained from G. In fact, the
magnitude of the ordinates, such as those shown drawn, G'Z, G’ Z,
&c., will vary directly as the height of G varies, each ordinate being
the base of a triangle, the hypothenuse of which is the distance
between the point G and the point of the upright axis of equili-
brium, at which it is intersected by the line joining the centre of
buoyancy and the pro-metacentre (produced if necessary). The ordi-
nate is positive, and should be drawn above the base of the curve of
stability when this joining line lies upon that side of G toward which
the top of the body is turning ; and negative, and should be drawn be-
low the base-line when it lies on the opposite side of G. Nothing is
easier, therefore, than to construct curves of stability for a prismatic
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body of this form for any given degree of immersion, and for any given
position of the centre of gravity, when once the centres of buoyancy
and pro-metacentres have been determined for the given draught
of water. In Fig. 23 we have shown a series of such curves (or

Fig. 23.

rather half-curves, as they represent inclination one way only), for
the 25-feet prism immersed 3 feet, as shown in Fig. 22. In Fig. 23
the dark curve represents the stability (or righting levers) when
the centre of gravity is at the centre of the body ; the light curves
lying above the dark one represents successive lowerings of the
centre of gravity, 2 feet each time; and the light curves lying
below the dark one represent successive raisings of the centre of
gravity, 2 feet each time. The ordinate corresponding to a given
angle of inclination increases and decreases by an equal length each
time, for the reason before stated—viz, that it varies directly with
the height of the centre of gravity

T84 measured on the axis of equili-
brium.

Before proceeding further with
the case of square prisms, let us
consider how the positions of their

,  bro-metacentres and metacentres

w » z__ may be determined. In Fig. 24,
E?L W L and W L' are successive
el water-lines, making with each

other, we will suppose, the very
small angle 6. B is the centre of buoyancy corresponding to W L,
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and B’ the new one; g is the centre of gravity of the triangle
W F W/, and ¢ that of the triangle, LF L. F will be in the line
M B, and the two small triangles just mentioned will be equal. It is
easy to find how far B’ is from B, because the travel of the centre
of buoyancy has been caused solely by the emersion of the small
triangle on one side, and ¢mmersion of the equal triangle on the
other side. This is equivalent to saying that a triangle of buoy-
ancy, so to speak, has travelled from the position in which its centre
of gravity was at g to one in which its centre of gravity is at ¢, and
from a well-known proposition of mechanics it follows that the
area of this triangle multiplied by gg is equal to the whole
immersed area of the body multiplied by B B'.*

In other words, if v be the area of the triangle, and V the whole
immersed area, then

VxBB =vxgg¢g;
and, therefore,
BB = % gq.

B B’ is parallel to g ¢’ (as we just saw in the foot-note), but we need
not dwell on this here, as the angle 0 is supposed to be exceedingly
small Later on we shall see that in the case of ships, and for large
angles of inclination, we shall have to substitute for g g/ the

* Professor Rankine, in his Applied Mechanics, states " Fig. 25,
this principle in 80 concise and neat a form that we are
induced to give it here. He says—‘‘Let A B C D (Fig.
25) be a body of the weight, W, whose centre of gravity,
Gy, is known. Let the figure of this body be altered by a,
transposing a part, whose weight is Wy, from the position
ECF to the position FD H, so that the new figure of , F p
the body is ABHE. Let G, be the original, and Gy the
new position of the centre of gravity of the transposed o G
part. Then the moment of the body relatively to any axis g
in a plane perpendicular to G, Gs will be altered by the 4&%
amount W;.G; Gg; and the centre of gravity of the
whole body will be shifted to Gs, in a direction, Go Gs, E
parallel to G; Gs, and through a distance given by the
formula B 4

__ W,
Gols =G, Gs W,*
If horizontal lines be drawn from G, and Gy in the figure, and perpendiculars be
dropped upon them from Gy and G; respectively, meeting them in gy and gy, then the
horizontal distance through which the centre of gravity is shifted will be given by the
formula

Gogs = G19gs ’W:"
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distance apart of their perpendicular projections upon the new
water-line.

Now, if we take y to represent the half-breadth of the body
(WF or FL), Fg and Fg will, by a well'known property of
triangles, each equal —g— ¥ (the angle being very small); and, there-
fore, WL or W’ I’ not differing materially from the whole breadth
measured along the line, g ¢/,

g4
99=34%
The area, v, of one of the triangles will be equal to -;— FLxLL,

but %er tan. 0, and, therefore, L L’ = F L tan. 0.

Hence, V= -; FL’ tan. 0
2—;— y® tan. 0.

% 92 tan. 0 x % y
Consequently BB = v

2 ptan b
-l .

ButObeingveryamull,—%—%’—may be taken as equal to tan. 6

and BBP=BM¢tan.0 . . . . . . . (2)
It follows from equations (1) and (2) that

_2
BM=3v

It will be seen later on that there is a general expression for the
height of the metacentre above the centre of buoyancy of a ship in
the upright position, of which this is a simple form, its simplicity
being consequent upon the fact that we are here dealing only with
a square prism, and are assuming that its volume is represented by
its sectional area.*

* The general expression to which we refer, and which we shall show the reason
of afterwards, Is 0

[yPdx
BM =£v__ .

The employment of the sign of integration (/) in this expression and in the next
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On looking over the previous demonstration it will be seen that
it will hold with perfect accuracy for the height of the intersection
of the two consecutive verticals through any two consecutive centres
of buoyancy whatever. For example, if the original water-line
(Fig. 21) instead of being W L had been W’ I, and B' M had been
the original vertical, and the second water-line had been taken at a
correspondingly greater inclination, the demonstrations would have
been unaltered, and only the quantities. (y, g ¢/, &c.) would have
been different. The expression

_2 9
BM=3 Y%

would have been precisely of the same form in all such cases, and
is, therefore, & general expression for the height of the pro-
metacentre above the centre of buoyancy for the square prism in
question at all angles of inclination.

It will be further seen that the form of the body below the
water-line does not enter into the demonstration, and that the
demonstration would have been precisely the same if we had taken
not a square prism, but a prism of any section whatever. Con-
sequently, the expression given is true for all prismatic bodies, and
the height. of the metacentre, or of any pro-metacentre, above the .
corresponding centre of buoyancy may be found from the fact that
it is equal to two-thirds of the cube of the half-breadth of the
corresponding water-line divided by the whole immersed area of
the section.

Some interesting consequences follow from these facts. First, it
will be seen that, assuming any given specific gravity for the prism,
and consequently a given amount of buoyancy (V being then
constant), the height of the pro-metacentre above the corresponding
centre of buoyancy, at any angle of inclination whatever, will be
directly proportional to the cube of the half-breadth of the body.
measured at the water-line. Hence, for all positions of the body in
which the breadth at the water-line is the same, and the displace-
ment the same, the pro-metacentre and the centre of buoyancy will
be at equal distances apart. Somie readers will find it interesting
and instructive to verify this by examining Fig. 26, in which the

chapter, need not trouble those readers who are without knowledge of the Integral
Calculus., It is merely a conventional and simple mode of indicating that a number
of small elements are to be added together into one sum, as will be more fully

explained hereafter.
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curves of buoyancy and the curve of pro-metacentres (or the meta-
centric) are again traced throughout a complete revolution of the
body.

It will then be seen that what bas just been said is true, not
only of the cardinal points, so to speak, of the figure (shown already
in Fig. 21), but also of all equal water-lines. For example: at

Fig 2.
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angles of 10°, 80°, 100°, 170°, 190°, 260°, 280°, and 350°, Fig. 26, the
water-lines are all equal, being symmetrical with reference to the
four sides of the figure; those at 10° and at 350° being evidently in
immediate symmetrical relation to the side of the prism that is
lowest in the figure ; those at 170° and at 190° being in similar
relation to the side which is shown at the top, and so on.

The water-lines at 30°, 60°, 120°, 150°, 210°, 240°, 300°, and 330°
are all equal, and it will be seen that their pro-metacentres are all at
equal distances from their respective centres of buoyancy. Other
like symmetries will suggest themselves to the reader.
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There are other inferences that may be drawn. For example:
with the body floating, as shown in Fig. 26, y, the half-breadth at
the water-lines remains the same for all depths of immersion, and

2
therefore in the value of BM (viz., 3_3’_8 ) the numerator of the
v

fraction remains constant for all depths. BM varies therefore in
this particular case, inversely as V, becoming small as V becomes
large, and large as V becomes small. But V varies directly as the
depth of immersion, and consequently the height of the metacentre
above the centre of buoyancy varies inversely as the depth of
immersion or draught of water. As the pro-metacentres all follow
the same law, it is quite easy in passing from one draught of water
- to another to determine their positions.

We have already explained that the distances between the
centres of buoyancy and the corresponding pro-metacentres must not
be taken as measures of the righting forces or stability. But there
are symmetrical relations existing between the righting forces
arising out of the symmetry of the floating body which we are
considering. One of these is very important. Let us suppose in
Fig. 26 that the body, instead of being only immersed, as there
shown, to WL, is immersed to the line, W L', marked 180°, which
is as near to the top of the body as the water-line, W L, shown in
the figure is to the bottom of the body. If we now suppose the
body to rotate as before through a complete rotation (360°) it is
obvious that it will have precisely the same water-lines as before,
in regular succession as before, only the parts which were before
emersed will now be immersed, and vice versa. They will have,
therefore, at every angle of inclination, precisely the same centres as
before (but centres of emersion and immersion interchanged), and a
well-known property of the centre of gravity provides that the
lines joining the centres of immersion with corresponding centres
of emersion must all pass through the centre, G. For the sake of
clearness this is illustrated separately and adapted to other draughts
of water, in Fig. 27, where W L is the water-line, the body being
inclined; bb’ are the centres of the immersed and non-immersed
parts respectively, m m’ the corresponding pro-metacentres, G Z and
GZ are perpendiculars drawn from G upon bm and &'m’. Letv
and v' be the volumes (represented by the areas, as before) below
and above W L respectively, or v the immersed and + the out-of-
water volume. We will still designate the half of WL byay. We
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know that bm and ¥ m’ (shown on a larger scale on the side of the
figure) are parallel, both being perpendicular to W L, and therefore

the angles, GbZ and G¥Z, are equal. Consequently the right-
angled triangles, bG Z and b’ G Z, are similar, and GZ is to G Z’ as
Gbis to GV

But Gbxv=Gb x v
and therefore GZ:GZ ::Gb:Gb :: v :v;
and GZxv=GZ x 7.

In other words, the righting moments—or rather capsizing momentes,
as they happen here to be—are exactly the same, whether the body
be immersed to W L, as shown in Fig. 24, or be turned upside down,
and sunk till it floats at the same water-line—always providing that
the body be homogeneous. It follows, of course, that the stability
of the prism would remain unaltered if it were simply sunk to the
line, W L, provided its centre of gravity still remained in its centre
of form. Small immersion and small freeboard therefore are atten-
ded in this case by like conditions of stability.

Mr. F. Elgar* drew attention to this class of considerations as
follows t:—*“ Any homogeneous floating body which is symmetrical
about the three principal axes at the centre of gravity—such as a
rectangular prism or an ellipsoid—will have the same moment of
stability at equal angles of inclination, whether floating at a light

* Now Professor Elgar, of Glasgow University.
+ In a letter to The Times, published September 1, 1883,
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draught with a small volume below water, or at a deep draught
with a similar volume above water. For instance, if a homogeneous
prism of square cross section, the sides of which section are each five
feet in length, floats at a draught of water of one foot, it will then
have precisely the same moment of stability at equal angles of
inclination, and consequently the same curve of stability through out
as if it were loaded—without altering the position of the centre of.
gravity—till it had four feet draught of water and one foot of
freeboard. From this it follows that in such elementary forms of
floating bodies as these, lightness of draught has the same effect
upon stability as lowness of freeboard, and if a low freeboard is
unfavourable to stability, so also—and precisely to the same extent
—is a correspondingly light draught of water.”

Mr. W. John, in following up this statement of the case,
said ¥ :—“The proposition laid down is not confined to a body
symmetrical about three principal axes at the centre of gravity, but
applies to all homogeneous floating bodies of irregular form revolving
about a horizontal axis fixed only in direction. This is easily seen
in the case of a horizontal prism with any irregular form of vertical
section. The line joining the centre of gravity of the immersed
section with the centre of gravity of the section above water passes
through the centre of gravity of the whole section, and the distances
from the latter are inversely as the areas; and the moment of
stability being proportional to the immersed area, multiplied by
this distance, it will be seen at once geometrically that the moment
of stability will be exactly the same if the diagram be turned upside
down and the part before out of water be now considered the
immersed part.”

‘We have seen this to be correct.

Before advancing further, it will be well to point out that,
although there is no such thing as a measurable righting force, and
therefore no such thing as stability, apart from a definite weight of
body, and a definite position of its centre of gravity, yet the fact of
the position and movements of the centre of buoyancy, and the
corresponding position and movements of the pro-metacentres, all
being dependent upon form alone, has induced authors to speak of
“stability due to form,” or “surface stability,” as it has been also
called.

Mr. Thearle, in his useful work on Theorctical Naval Archi-

* In a letter to T'Ae Times, published September 5, 1883,
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tecture, says— By surface stability is meant that tendency of a
vessel, when inclined, to return to the upright position, which is due
to her form, irrespective of the influence due to her centre of gravity
not coinciding with the centre of buoyancy.”

Mr. Mackrow, in his Naval Architects and Shipbuilders’ Pocket-
Book, puts the matter more explicitly by saying—“The moment
of statical surface stability is what the righting moment would be,
supposing the centre of gravity of the ship coincident with the
centre of buoyancy.”

It is sometimes convenient, as will more plainly appear here-
after, thus to separate the actual stability of a ship into two parts,
one of which is estimated upon the assumption of the centre of
gravity and centre of buoyancy being coincident, the other part
being an addition thereto, or subtraction therefrom, according as the
centre of gravity is situated below or above the centre of buoyancy.
It is perfectly obvious, however, and must never be forgotten that
stability measured upon the assumed coincidence of the centre of
gravity and centre of buoyancy is not in any true sense stability
due to form only, but stability which is just as much due to gravity
as any stability is ever due to it. Still it is, as we have said, some-
times convenient to assume the coincidence in question,and calculate
the stability then existing, and there is no particular reason why this
should not be called “surface stability,” or “stability due to form,”
to distinguish it. It will be seen later on that Mons. V. Daymard,
of Marseilles, has turned to account this method of arranging
stability calculations with remarkable originality and success.

We will give additional fullness to this chapter, and exhibit the
French view of this doctrine of “stability of form,” by translating
here the remainder of the remarks by Mons. L. Emile Bertin, of Brest,
part of which were quoted in the last chapter, adding a note
received* from M. Daymard. M. Bertin goes on to say:—

“The points of the metacentric evolute (which we here designate
pro-metacentres) ‘play, in the study of stability, a 76l infinitely less
important than the metacentres. The only practical advantages
which one can discover in considering this evolute appear to be the
two following: In the first place, the directions of the upward
push of the buoyancy in which the stability is annulled are normals
to the curve of buoyancy drawn through the centre of gravity, G,
and are fangents to the metacentric evolute ; and through the point

* October, 1883.
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G we can draw the tangenis to the metacentric evolute more easily
and more exactly than we can draw the normals to the curve of
buoyancy. In the second place, the mazima values of the arm or
lever of stability (o—a sin. ) are the normals drawn through G to
the metacentric evolute; the evolute indicates therefore the posi-
tions of the maximum couple of stability, which are not indicated
by anything in the curve of buoyancy. These two advantages are,
however, of little value now that it has become the usage to repre-
sent the couples of stability by a curve traced with rectangular
co-ordinates, with which we see, still better than on the metacentric
evolute, the points where the stability becomes nothing, and those
where it reaches a maximum.

“An examination of the two processes employed (in France)
for determining the stability of ships at divers inclinations will
complete the proof that there can exist no possible doubt re-
specting the signification of the words metacentre and metacentric
height.

“In the geometrical process we calculate, by the aid of quadra-
tures, the moment p x HH’ of the couple

of the two wedges, OLL, and OFF, Fig. 28, , Fgss.
the one immerged the other emersed, for a
finite inclination, 6, and put , [’\’

px HH =P x C,M,sin. 0, E\E

calling M the metacentre, which is the point
already defined. In the experimental pro-
cess, one obtains, by inclining a small model,
a series of values of (p—a) sin. § corresponding to divers values of 4,
from zero to about 35 degrees; one deduces from the initial value
of (p—a) and from the initial value of p which is known, the value
of @ for the model ; the @ of the model is replaced by that of the
ship, and thus is obtained the couple of the real ship’s stability for
divers values of 6. All this supposes the values of p and those of
the metacentric heights, p—a, taken on the initial vertical through
the centre of buoyancy; this shows, at the same time, the practical
utility of the division of the metacentric height into its two terms,
pand a. )

« Often one is not content with distinguishing on the vertical
axis, C @/, the two heights, CM and C @G, of which the difference is
the metacentric height (p—a); it is desired further to distinguish,
in the couple of stability P(p—a) sin. 6, the two parts.
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P p Bin. e,
Pa sin. 0.

The first of these moments is called the couple of stability of form,
and the second, which would be a capsizing couple, is called the
stability of weight. There is nothing in this.which is inexact in
itself, but there may result from it the false impression that there
exist two sorts of stability, the one of form, the other of weight
which are not of the same nature. There is a celebrated theorem
of David Bernoulli, relative to the equilibrium of a ship on waves,
which- attributes to these two sorts of stability properties wholly
different, and from which Mr. Froude intuitively set the theory of
rolling free. Such notions of stability of form and of stability of
weight are definitely set aside. If we experience the need of giving
particular names to Pp sin. 6, and to psin. 6, we can call them the
couple of geometric stability and the arm of the lever of geometrie
stability.

“The rules and usages which I have just described so summarily
are doubtless not perfect. We can easily imagine more general and
more scientific representations of stability than those furnished by
metacentres. But these rules, very little modified since Bouguer,
have the advantage of being sanctioned by long practice ; they are
understood in the same sense by all those who employ them, and in
these conditions certainly cannot lead to any error.”

The interesting note from M. Daymard, of Marseilles, bears upon
the question of complementary measures of stability, and was sug-
gested by the correspondence previously quoted respecting the
relations between the stabilities of a given ship at light draught and
with small freeboard, and is to the following effect. M. Daymard
says*—

“There are for any ship whatever, and for every floating body
which possesses a longitudinal axis of symmetry, four positions,
viz.: Nos. 1, 2, 3, and 4, Fig. 29, inclined at the angles, 6, 180° — 6,
180° + 6, and 360° — 0, in which the areas of flotation are of
exactly the same form, and of which the immersed volumes are
alternately complementary; v and V — v, V being the total volume.
To each of these immersed volumes, v and V — v, correspond two
positions of the ship with its axis vertical, the one upright, the

* The substance of this note has, since this was written, been appended by
M. Daymard to his Paper read (April, 1884) at the Institation of Naval Architects.
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other reversed, or bottom upwards, as Nos. 5, 6, 7, and 8, Fig. 29.
There exists a simple relation between the arm of the lever and
the moments of stability corresponding to the positions, Nos. 1, 2,

Fig. 29,

3, and 4” M. Daymard proceeds to deduce these relations in his
note, but as in doing so he makes reference to the notation employed
in his beautiful system of calculating stability, which we shall here-

Fig. 30.

L

after consider, we will here briefly indicate in our own words his
mode of procedure, observing that we may for the present purpose
vegard the bodies spoken of as of prismatic form. Take, for example,
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the case illustrated in diagram Nos. 1 and 2, and let d,, d,, Fig. 30,
be the distances from the centre, O, of the whole volume, V, of the
respective centres of buoyancy, C,, C,, of the upright displacements,
vand V — v. Let R, R, be the corresponding centres of buoyancy

when the ship is reversed with like displacements, then we shall
have

C,0=d
C,0 =d,
OR =d, >
C,R,=d, +d,

V

Now let I, and I, be the levers of stability corresponding to the
positions, Nos. 1 and 2 in Fig. 29, and we shall have, as may be
the more readily seen if Fig. 24 and its descriptive text are
referred to,

d,v

L= (b4 =

)sm 0—-1 "V 3

and if we call m, and m, the corresponding moments, we shall have
my=[Vdy+v(d, - dy)]sin -1 v
=[Vd, + v (d, — dy)]sin. 6 — m,.
If in the second case we require the righting lever and the moment

for placing the body in the reversed position, as in diagram No. 8,
we have, calling these I’y and m',, respectively,

g Y
lg_lV—v

’
my=lv=m,

In these expressions it has been assumed that the centre of gravity
is always coincident with the centre of buoyancy, and consequently
variable. If G be a fixed centre of gravity, a, its height above C,
and @', its height above C,, we shall have dy—a =d, —a =d, — o’
= GO, which we may call D. When the following expressions
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will hold calling the arms of the righting levers, B, and B,, and
the moments, M,, M.

1st case : Volume v, inclination 6, for restoring the body to the
upright position, No. 5,

Bl.-_—ll—asin.e

M, =1v—awvsin 6.

2nd case: Volume V — v, inclination 180° — 6, for restoring the
body to the upright position, No. 6,

v . v
Bs=(dlv‘_—,,‘,"“)sm'0"llvf;,
M, = (d;, — @) Vsin. 0 — (!, v — @ v sin, 6)
=V Dsin § - M,.
If in the second case we require the arm of the lever, and the

moment for reaching the reversed position, as in diagram No. 8,
calling these B, and M’, respectively, we shall have

B,= ,‘,L_‘v--(di - )‘sin.o

—v
=-B,
M,=!v—avsin 0 - (d, = a) V sin. §
=M, -~ VDsin. §
=-M,.

The equalities, B; = — B,; M, = — M,, thus found by calculation
are also self-evident.

M. Daymard, in resuming, remarks that the effective moments
of stability in the cases, Nos. 1 and 2, with the fixed centre of
gravity, are different for the return to the upright positions, but
as there exists between them the relation, M; = VD sin, § — M,,
they are in a certain sense complementary.

* d) g - a is the distance of the centre of gravity, G, from the centre of

buoyancy, R, of the volume, V - v, measured from the top of the body downwards.
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M. Bertin has pointed out the fact that the expression (given pre-
viously in this chapter) for the height of the metacentre above
the centre of buoyancy—which is

Fig. 31. the radius of curvature of the

curve of buoyancy, where that
curve cuts the upright axis—can
be found by an independent process
of reasoning, and in a perfectly

“ Z— general form. The reasoning by

: which he proceeds to establish

0 this is based upon the following

4 ¢ (] elementary property of the circle,
\/ viz, in a ecircle, the moment of the

? surface of any segment whatever,

say A S B, Fig. 31, about its centre, M, is equal to two-thirds of the
cube of the half-chord, O B, of the segment. Let R be the radius
of the circle; y, the half-chord O B; and z, the distance M O;
then taking MY and M Z as axes of co-ordinates, and using the
word “moment ” as the equivalent of “moment of segment, A S B,
about the axis M Z,” we have,

R
moment = 2/ yzdaz.
%

But we know that
¥ +2* =Ry
and therefore

moment = 2 f : JRE—2 zdz,
(1]

3
‘whence moment — gﬁR’ — 2?) 1]
0N St
2
=3 .

Applying now this formula to the calculation of stability, if
the floating body be a cylinder or part of a cylinder, of which the
immersed portion is represented by its section, A S B, and of which
G is the centre of gravity, we see immediately that the condition
of equilibrium is that G should be immediately below M; and if
‘we put V(= ASB) to represent the immersed volume (and its
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weight likewise) we shall have as the moment of stability for
any inclination, great or small,

V x M G sin. 6.

Calling C the centre of buoyancy, and putting for M C, p, and for
GC, a (as is usual in France) this expression. may be written,

V(p —a) sin.-6.

But the moment which we previously calculated being equal to
V p, it is evident that we have

2
pP=3

the value arrived at by the usual investigation for stability.

Passing from the cylindrical floating body to any other having
the form of any surface of revolution whatever, of which the axis
is at M, it is evident that the upward thrust of the buoyancy at
any angle of inclination will pass through the axis, the moment of
stability will be calculated as before, and (if we still call p the
distance between the centre of buoyancy and the axis M) its
expression will be

225
PT3 363

the surface of revolution being supposed, for the calculation of the
moments, decomposed into a series of slices of the constant thick-
ness, &, in each slice the half-ordinate of the water-line breadth
B Yg and the surface of the transverse sectlon 8 The expression
for p may be written

_28 %5

\4

observing that Z s &, is the immersed volume.

Finally, “if we consider a floating body of any form whatever,”
says M. Bertin, “and give it infinitely small inclinations, the
thrust passes constantly through the centre of curvature of the
curve of buoyancy, which performs the same part as the axis, M,
in the two preceding cases. The displacements of the centre of
buoyancy depend only on the total volume immersed and on the
form of the water-line plane, the influence of the form of the trans-
verse sections being neglected, as it may be, for infinitely small

ool
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angles. The radius of curvature of the curve of buoyancy is
therefore equal to the radius of the circle, which would form the
curve of buoyancy of a floating body, of the same area of water-line
plane and the same immersed volume, which had the form of &
solid of revolution, This radius is given by the formula

238 2y}

which is therefore of general application.

“To resume,” adds M. Bertin, “the metacentre, such as Bouguer
defined it, is the axis of the floating body of revolution, to which any
other floating body whatever can be assimilated, from the point of
view of initial stability, and the height of the metacentre above the
centre of buoyancy can be directly established by this property.”
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CHAPTER IV.

General Case: Stability of Body of Irregular Form—Present Treatment thereof purely
Statical —Effects of Inclination—Wedges of Immersion and of Emersion—
Travel of Centre of Buoyancy—Righting Lever of Stability—Expression for the
same—Atwood’s Fundamental Formula of Statical Stability—Work to be done
in Calculating a Ship’s Stability—Construction of Curves of Stability—Example
of a Curve of ‘“ Moments ” of Stability in Foot-tons—Importance of Observing
the Scale of Curves of Stability—Curve of B R’s—Curve of Sines—Curve
of Stability represents the Difference between these Curves—Stability due to
Form at Various Draughts of Water—Mons. V. Daymard’s Curves—Metacentrio
Stability—Fundamental Expression for Stability at Evanescent Angle of
Inclination—Expression for Height of Metacentre above Centre of Buoyancy—
Moment of Inertia of Ship’s Plane of Flotation—Atwood’s System of Calculation
of the ‘‘Wedges” — Several Conditions under which Stability remains
Unchanged—Atwood’s Methods of Equalising the * Wedges”—The late Mr.
Scott Russell’s Method of Treating Stability.

WE now come to consider the general case of a body of irregular
form, like a ship, and to ascertain what will be the leverages with
which the weight of the body and the buoyancy of the water will
operate to give motion to the body, presuming it to be inclined
from its upright position, and then left free. Like Bouguer, and
Atwood, and Dupin, we shall for the present treat the problem as
one purely statical, and take account solely of the measures of
the righting or capsizing forces which we find at work. We shall
presume, as they do, what is of course not usually or really
practicable, viz, that the ship or other body, when brought to a
given angle of inclination, and into a given position which is not
one of equilibrium, is for the moment, while we estimate the forces
at work, herself as stationary, and immersed in water that is also
as stationary, as if the body were floating upright in perfectly
smooth water, and in undisturbed stable equilibrium. It is on
this assumption that all the ordinary formulse of statical stability
are obtained. As a matter of fact, when a ship is inclined at an
angle at sea, she is usually undergoing more or less oscillation,
with her own centre of gravity rising and falling, and has to acquire
her stability, whatever its amount, from the pressures of water
which is itself undergoing continual movement. There is no fixed
position of equilibrium for a ship so circumstanced. This point
has been very well stated by Mons. L. E. Bertin, who says,* “rolling

* See Naval Science, vol. iii. page 44.
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is produced by the alternate variations of the different forces which
the water exerts on the immersed hulls of ships. In consequence
of these changes the position of equilibrium of the ship, that is to
say, the inclination for which the moment of all the external forces
is zero, undergoes a periodic motion of the nature of the motion
of a pendulum. By virtue of its moment of inertia the ship
cannot follow the motion of the position of equilibrium ; it assumes
round this a proper motion, which would become an ordinary
pendulous motion if, at a given moment, the position of equilibrium
remained fixed in a certain direction. In order then to understand
the phenomenon, we may consider rolling as resulting from the
superposition of a roll of equilibrium and of a proper roll.”

All these matters have to be considered, of course, in any
exhaustive account of a ship’s stability under ordinary conditions
at sea; but for the present, as we have said, we shall leave these
dynamic questions out of consideration, and presuming the condi-
tions to be statical, and the water in which the body floats to be at
rest, shall proceed to examine the problem. )

Let Fig. 32 represent a transverse section of a ship, of which

Figse.

W L is the line in which the plane of flotation, when the ship is
upright, is cut by the plane of the paper, the centre of gravity of
the whole ship being at G, which we will suppose to be either in
the plane of the paper, or projected perpendicularly upon it. Let B
similarly represent the centre of buoyancy of the whole ship, or its
projection, Now, suppose the ship to be inclined through an angle
of a few degrees, by some external force that acts horizontally, and
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therefore does not alter the displacement of the ship, and let W’ L’
be the new water-line, or the line in which the new plane of flota-
tion is cut by the plane of the paper. Let S be the point in which
the two water-lines, W L and W’ L, intersect each other. The point
S, may not now be found at the middle point of W L (as it would if
the angle of inclination were exceedingly small) because of the
irregular form of the ship. The effect of the inclination has
obviously been to lift out of the water a wedge-like body enclosed
between the two planes of flotation, of which body WS W' is the
section, and to submerge on the opposite side of the ship another
somewhat similar wedge-like body, of which the section is LS L’
These wedges, so to speak—commonly known as the wedges of
emersion and immersion respectively—will each be bounded on the
outside by the outside of the ship, and will therefore usually differ
in external form, but they will be precisely equal in volume, for
otherwise the whole displacement of the ship could not remain
unaltered. They will be of the shape roughly indjcated in Fig. 33,
their size and form varying, of course, with every variation of size

and form in ships. In most ships the inclined water-line will not
be symmetrical about a longitudinal axis as the upright water-line
is, for the obvious reason that the breadths of ships differ above
and below any given water-line, especially near the ends, and more
especially near the stern. It is, in fact, as will more clearly appear
presently, to the irregular and unsymmetrical form of the wedges
of immersion and emersion that most of the labour and trouble of
calculating a ship’s stability is due. Still, the two planes of flota-
tion must intersect each other in a longitudinal straight line
(presuming no change of trim to occur), and of that line we will
assume S to be the projection on Figure 32.

During the inclination and the consequent immersion of the
wedge whose section is LSL’ and the emersion of the wedge
WS W, the centre of buoyanoy was necessarily changed, and we
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have already seen (in the last chapter, foot-note, page 29) where it is
now to be found. It will be situated at a point, B, Fig. 32, which
can be determined by the formula

,_UXgg’

where V is the whole volume of displacement, v the volume of
either of the wedges, and gg’ the distance between the centres of
gravity of the wedges. B B’ will be parallel to gg. In the inclined
position of the ship, the buoyancy will now act vertically upwards
through B’ M’, and therefore perpendicularly to the new water-line,
W’L’, while the weight of the ship acts vertically downwards
through G, in a line, G 7, parallel to B°'M’. From B draw BR, and
through G draw G Z, both parallel to W’L’, or perpendicular to
B'M'

We are now able to see clearly what will be the righting force
acting upon the ship. We have only two forces to deal with, viz,
the weight of the ship acting directly downward through G r, and
the buoyancy acting directly upward, through B’'M’. Two parallel
forces so acting constitute a “couple,” and the effect will here be
measured by multiplying the weight of the ship into the distance
GZ '

At this point let it be observed that if gh and g’/i’ be drawn
perpendicular upon W’L/, the distance, A&/, will be the distance
between the centres of gravity of the wedges of immersion and
emersion measured along or parallel to the new water-line.
Similarly, while BB’ represents the distance travelled by the
centre of buoyancy in a direction parallel to gg’, BR represents the
distance travelled by it parallel to A%’ or W’ L. In the remainder
of this investigation, therefore, we need no longer consider the
distances g ¢/, or BB, but only the distances A2’ and BR.

If a be the angle between the two planes of flotation, W L and
W’ L, this will also be the angle BGr, and therefore Br =BG
sin. a.

We now have all the elements of the case before us.

GZ=rR=BR-Br=BR - BG sin.a.

But BR = ?—Evh K

Therefore,
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GZ=”§}”—BGﬁmm

This is Atwood's fundamental formula of statical stability. It
obviously represents only the leverage with which the weight of
the ship acts; to get the moment of stability, the value of G Z must
be multiplied by the weight of the ship,

We saw in a former chapter that French naval architects usually
call the height BM’, p; and the weight BG, a; and putting @ for
the angle of inclination, they write the equation of stability thus:

M =P (p—a)sin. 0;

where M is the “moment” of stability, and P the upward pressure
of the fluid. M is of course equal to W x GZ, and the above
equation is equivalent to Atwood’s formula just given, p sin. 8 being
the equivalent of g_xvh_k

We now clearly see what has to be done in calculating a ship’s
stability at a given angle of inclination. We have to ascertain the
volume of wedges of immersion and emersion, and take care that
they are equal. If they do not come out equal at the first attempt,
they must be made so by a process to be described hereafter.
Being made equal, the moment of each wedge about the point S
has to be ascertained, and the two moments have then to be added
together, because, still calling v the volume of the wedge, we have

vx bl =v(kS+8k),

and it is convenient to calculate &S and S’ separately. We also
require to know the total volume, V, or the displacement, and the
positions of the upright centre of buoyancy, B, and of the centre of
gravity, G. Without each and all of these particulars, Atwood’s
formula cannot be applied; with them, the statical stability at
any angle can be obtained with certainty and accuracy.

What has thus far been said will not enable a reader to make
calculations of stability, but it will enable him to understand in
what manner curves of stability are constructed, and what it is
that they really represent. The common curve of stability re-
presents nothing more than the lengths of GZ (or of its products
when multiplied by the weight of the ship), obtained, by such
calculations as have been indicated, or otherwise, at variouz angles
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of inclination, and thence inferred for all intermediate angles, by
the common process of setting up the calculated G Z’s as ordinates
along a line representing angles of inclination, and drawing a
curve through the extremities of these ordinates. This curve of
G Z’s will equally well represent the curve of moments of stability,
if the scale be altered accordingly.

For example, Fig. 34 is the curve of stability of a mail steamer,
having at the time for which it was calculated a displacement of

25,000 Ft. Tons

Fig 3.

L1 75,000
1} 10,000

4 £,000

| i

: H + H H :
o* i* 20° 30° 40° 50° 6o 70° 80° 9

about 8,000 tons, It is in this case a curve of moments of stability,
a8 will be seen on looking at the scale on the left of the figure
which represents foot-tons, but the curve would be precisely the
same if it represented leverages, or G Z’s, only the ordinates would
have to be read on a scale 8,000 times greater than that represented.
The scale as shown represents 16,000 foot-tons for each inch of
ordinate. If treated as a scale of GZ’s each inch of ordinate
would therefore represent 2 feet (*%%%’) of length of righting lever.
In constructing this curve the length of GZ was found for a
few specific angles of inclination, and multiplied by 8,000, a point
on the curve being thus obtained for each such angle. A sufficient
number of these points to fix the form of the curve being deter-
mined, the curve was then passed through them, and, that done,
the stability at any intermediate angle could be measured by
measuring the ordinate to the curve at the corresponding angle.

In examining or employing such curves one must be careful
to observe ;the scale upon which the angles of inclination are
set off along the base, otherwise very false impressions may be
formed. No fixed relation at present exists between the scale
adopted for angles along the base, and the scale adopted for
either “moments” or “levers” of stability in setting up the
ordinates. It may, therefore, happen that curves of stability
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constructed on scales relatively very different, may come together
under consideration, and should the scales of ordinates happen to
be alike or mearly alike, while the

scales of abscissee (angles of inclination), Fig.35.

differ materially, a hasty view of them 35,000 F¢ Tons

may lead to serious misconceptions.

To illustrate this we give in Fig. 85 the  [[**
same curve of stability as is shown in
Fig. 34, with the ordinates on the same
scale, but with the scale of abscisse /0,000
reduced to one-third of what it there
is. For all purposes of measurement
and careful comparison these curves
are precisely the same; but any one
looking at them, and not observing their differences of scale,
might regard them as signifying very different amounts of stability.
There is, however, as has been said, no difference between them.

If we look again at the fundamental formula—
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we shall see that its value must ordinarily vary not only with
every change of inclination, but with every change in the displace-
ment and draught of water, and with every change in the position
of the centre of gravity.

As regards changes of inclination it is obvious that in a given
ship v and kA" will both vary as the angle a varies, becanse the
magnitude and form of the wedges must change with the angle.

As regards changes of displacement and draught of water, B,
and therefore B G, must vary, and v and A &’ will also vary.

As regards changes in the position of the centre of gravity, G,
these affect only the value of the sccond part of the formula, viz.,
BG sin. a. This fact has suggested the device referred to in the
last chapter, of imagining the centre of gravity, G, to be coincident
with the centre of buoyancy, B, and getting out the value of GZ
(which then becomes BR) on that supposition, and calling the
value so obtained “surface stability,” or “stability of form,” or
“stability due to form.” We have already said, and it will now be
clearly seen, that although the value of BR is independent of the
position of the centre of gravity, it can only be called the arm of
the stability couple, or regarded as the lever of stability, on the

GZ = — B Gsin. q,
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supposition that G is coincident with B, and therefore gravity, and
not form alone, enters just as much into this measure of stability as
into any other. At the same time, it is quite obvious that by the
device of assuming G to be situated at B, and treating the length of
BR as the measure of “form stability” at a given angle, you obtain
a quantity which leaves the position of G out of consideration for
the time being, and depends on the geometrical form and dimensions
of the ship, and from this you can at once obtain the value of GZ
for any and every position of G by subtracting BG sin. @ from it,
or by adding BG sin. a to it, should G fall below B; for it will
be evident from our inspection of Fig. 32 that if G should fall
below B, GZ would be greater than BR by the quantity BG
sin. a.

One method, therefore, of constructing a curve of stability would
be that of ascertaining the values of BR for successive angles of
inclination, and constructing a curve with these values for ordinates,
then (presuming G to be above B, as it usually is) setting off another
curve of which the ordinates are the sines of the corresponding
angles multiplied in each case by BG. The differences between
the ordinates of these curves would furnish another set of
ordinates, which would represent those of the ordinary curve of
stability.

Fig. 36 illustrates this mode of procedure, AB being the curve
of which each ordinate is the BR of the corresponding angle; CD,
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the curve of which the ordinates are B G, sin. & at each point ; and
EF the curve of stability, the ordinates of E F being equal
to the difference between the ordinates of AB and C D at- each
point.

The ordinary curve of stability is applicable only to one given
draught of water, and one corresponding displacement for a given
ship, and to one definite position only of her centre of gravity; we
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have now seen that it can have a more extended character given to
it by making it a curve of BR’s, instead of a curve of G Z’s so to
speak, because in this latter form it can be made directly available
for all conditions of stowage in the ship, i.e., for all possible heights
of centre of gravity, care being taken to reduce it from a curve of
BR's to a curve of GZ'’s, when the position of the centre of gravity
becomes known, by cutting off from its ordinates at every part a
length equal to B G x sine of angle of inclination.

Instead of proceeding, as is indicated in Fig. 36, the process may
be conducted as is indicated in Fig. 37, in which A B is the curve
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of B R’s as before, but the ordinates of the curve of sines are set
down from this curve of BR’s, and a new curve is drawn through
the points so obtained, this new curve, EF, being the ordinary
curve of stability as in Fig. 36.

However the curve of stability may be obtained, it is obvious
that if extended over a sufficient angle, it furnishes an exhaustive
record of the stability, under the condition, that all the quantities
given in the fundamental formula are known and remain unaltered.
It also appears from what has just before been explained, that if
the curve of B R’s be constructed—which is the so-called curve of
“surface stability,” or curve of “stability of form ”"—it may be
made available for indicating the limits within which the stability
at any given angle of inclination must lie, provided the limits
within which the centre of gravity, G, lies are known. For from
the curve, A B, Fig. 37, can be set down two sets of points, one
set corresponding to B G sin. a, when G is at its highest limit,
and the other set corresponding to B G sin. a, when G is at its
lowest limit; and if curves be passed through these two sets of
points, the lower of the two (that nearest the base) will represent
the least stability at every point which the vessel can bave at the
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given immersion, and the upper curve will represent the greatest
stability at every point, which she can have at that immersion.
Next, we have to consider cases in which the immersion varies,
whether from change of loading, consumption of fuel and stores,
or any other cause; we shall here have our fundamental expression,

='uxhh’

GZ v . — BGsin. a,

undergoing changes of value from a cause which thus far we have
not much considered, namely, the change of V or of the displace-
ment. With V,v and 2 %" will also usually change, from point to
point, and so will the distance BG. For every given immersion,
however, curves of stability can be constructed in accordance with
either of the methods which have just before been described, and a
very complete record of the stability may therefore be obtained
for all possible conditions. It is manifest that if we calculate
curves of B R's or curves of stability of form, for the greatest
immersion contemplated, for the least immersion, and for a few
intermediate displacements, and apply the method previously set
forth for obtaining the maximum and minimum curves of actual
stability at each of these immersions, we shall thus put ourselves
into possession of all, or nearly all, the information which can be
required concerning the statical stability of a given ship. The
stability of a ship which has undergone injury, and become more or
less water-logged, is deferred for special consideration hereafter.

A little reflection will show that as the «stability due to form ”
can be obtained for all degrees of displacement, and for all angles
of inclination, without taking the actual position of a ship’s centre
of gravity into account, something more than we have yet con-
sidered may be done in the way of grouping the measures of her
stability. For instance, it is perfectly practicable to select two
extremes of displacement, one due to the weight at launching,
and the other due to the greatest loaded weight, and also a certain
number of intermediate displacements, and for each of these to
calculate the position of the centre of buoyancy with the ship
upright, and the length of BR at the given angles of inclination.
Through the centre of buoyancy for any one of the given displace-
ments, a line may be drawn at the requisite inclination to the
horizontal, and equal in length to the calculated B R, and by
repeating this process the BR's may be obtained for various dis-
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placements and inclinations. Curves drawn through the extremities
of the lines so obtained, will furnish a .

ready means of obtaining the lengths of Figsg.

B R for all intermediate draughts of

water at corresponding angles. This is

illustrated in Fig. 38. B, B’ are centres

of buoyancy, corresponding to the load

draught and light draught respectively ;

BR,, BR, BR, BR, are the BR’s .

as calculated for each given angle of

inclination at load draught, and applied

as previously described; B'R’,, B’ R/,

B'R,, B' R, are the respective BR’s

for light draught. Other points upon .

R, R, R, R, &c., may be similarly ob-

tained for intermediate draughts of

water, and the curves, R, R, R, R/,

R, R, R, R, be drawn. They will evi-

dently be in each case the locus of the feet of perpendiculars from
the upright positions of the centre of buoyancy at different draughts
of water upon the verticals through the centre of buoyancy when
the ship is inclined at the given angle, and the length of BR for
any position of the centre of buoyancy comprised between B and B’,
and for either of the given inclinations, may be readily ascertained
by drawing a line through the centre of buoyancy at the given
inclination until it meets the curve corresponding to that inclination.
But this extension of the subject we shall not pursue until we
come to consider the more advanced stages of the science of stability,
and more especially the system of M. Daymhrd, who grounds his
exhaustive process of calculation upon such curves as those just
explained.

‘We must now turn for a time to the question of what is known
as “ metacentric stability.” Referring back to Fig. 32, page 46, let us
suppose the angle of inclination, W S W’, and therefore B M’ R to be so
very small that W and W’ almost coincide, and M’ becomes the meta-
centre. The point, S, may then be regarded as situated at the
middle point of WL, or of W L. The sectional area of either

wedgewillbeSL >;—L——L— and

(@asLL =LS x sin. a)
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this will equal % LS? sin. . kh may be taken as equal to

2 x g LS = ; LS, and, therefore, if v’ be the sectional area of the

wedge of immersion, we have

o X bl = LSx%L&gna

L S8 sin. a.

W N Ol

But obviously the sectional area, ¢/, cannot represent v, for that is
the volume of the whole varying wedge of immersion extending
right fore and aft the ship. To represent this, we will suppose the
fore and aft length of this wedge to be represented by =, and
imagine this to be divided into an indefinite number of short pieces
each of a length, dz, and then the quantity above given, if mul-

tiplied by dz (or ;23 L S® sin. @ x d ), will be the value of v x Lk

for one of these very short lengths of the wedge; and its value for
every other such short length will be represented by a similar
expression, in which, however, LS must be supposed to alter as the
half-breadth of the ship at the water-line alters. Bringing the
integral calculus to our aid, as a convenient means of summing up
all these little quantities into one, we shall thus get

2

v X Il.h':g

and it will follow that

f LS*sin. a d =,

9 3 o
GZ:g. Iige.ﬂ'—a'dx—BG sin. a.
Which is substantially Atwood’s fundamental expression for the
stability of a ship at an evanescent angle of inclination. Putting
y = the half-breadth at the water-line, and 6 for the very small
angle (instead of «), the above expression takes the well-known
form,
o

GZ=} L% sin g BGsin. 0.
If in this we put BG =0, which is equivalent to making G
coincident with B, we shall have
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GZ<=BR= BMsmO—— s”sd‘”sme

or

which is the general expression for the height of the metacentre, M,
above the centre of buoyancy, B, and is ldentxcal with the expression
given in the last chapter.

The result here arrived at is clearly independent of the position
of the centre of gravity, and expresses the geometrical relation
between the metacentre and the centre of buoyancy. A demonstra-
tion, conducted on the lines of the foregoing, but leaving the position
of the centre of gravity altogether out of the question, would bring
us to precisely the same expression for the distance of the centre of
buoyancy from the corresponding pro-metacentre, or, in other words,
for the radius of curvature of the curve of buoyauncy at the point,

viz. :
BM__3fg3dac

where y would be the half-breadth of the corresponding water-
line.

The height of a ship’s metacentre, and of any pro-metacentre, above
her corresponding centre of buoyancy is thus seen, as we saw to be
the case with prismatic bodies, to depend solely on her water-line
breadths, her length, and her volume immersed, or displacement.
It will also be seen that as her breadth at every point enters into
the expression in its third power, or is multiplied by itself twice
over, the breadth of the ship—not her breadth amidships only, but
her breadth at each point all along her length—has very much to
do with her metacentric stability, or stability at and near the
upright position.

As the value just given for the height of the metacentre above
the centre of buoyancy is in part identical with the Moment of
Inertia of the water-line area (or area of the plane of flotation), and
as the moment of inertia of this area is therefore frequently spoken
of as an essential element of a ship’s stability, it is desirable here
(for the convenience of some of our readers) to briefly explain what
is meant. Let Fig. 39 represent the area of a ship’s water-line
section, and let pgrs be a very small rectangular portion thereof,
the length of which pg or 78 =dz. Let us take an extremely
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narrow strip of this, parallel to the axis, A B, whose distance from
A B is y and whose breadth isdy. Now the moment of inertia of a
body being the sum of the products obtained by multiplying the

Fig59.

r

[ |dy
P
y

re

mass of each of its particles by the square of its distance from the
given axis, we shall have (dealing with areas only in lieu of masses
and therefore neglecting weight) that the moment of inertia about
AB of the strip, whose length is d« and whose breadth is dy,
will be
dz x dy x ¥,

and the expression for the moment of inertia of the whole water-
line area becomes

2 [vax

This is identical with the numerator of the fraction representing the
height, BM, and therefore we may write the equation for the height
of the metrecentre thus—

moment of inertia of water-line area
volume of displacement )

BM =

When we have to deal with large inclinations we must revert to

Atwood’s main formula,
az="%** _BGsn.a.
v

In applying this to a ship, the displacement (V) and the positions
of the centres of gravity and buoyancy (which are separated by the
distance, B G) have to be either known or calculated ; and BG sin. @
is of course known for any given value of a. The quantities, A A’
and v are what have to be found in order to complete the known
terms of the expression.

The manner in which Atwood deals with this part of the subject
is a8 follows:—The object, of course, is to find by actual measure-
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ment and calculation the solid contents of the wedges immersed and
emersed on opposite sides of the ship throughout its length, and the
distance apart of their centres of gravity. A small portion of these
wedges comprised between two transverse planes, W W L'L and
wwl'l, is shown in Fig. 40. The planes are only a few feet apart

(2
L

represented by X2 = Ww = LI. From the drawings of the ship
the areas of XL L’ (embracing the segment bounded by the line
representing the curved side of the ship) and of %1l can be caleu-
Iated, and the mean of these two areas multiplied by the thickness,
Xa, will give the solid contents of as much of the depressed or
immersed wedge (viz, a portion, X #, in length) as is shown in the
figure. The aggregate of all such wedges, calculated so as to
comprise the whole length of the ship, will be the solid contents
of the whole immersed wedge. The solid content of the opposite
or emersed wedge must be similarly calculated, and should be equal
to that of the immersed wedge. If the two be found unequal, the
second water-line must be raised or lowered, and the calculations
repeated until an equality between the immersed and emersed
wedges is established. The centres of gravity of these wedges are
similarly obtained.

It follows from what has gone before that the stability of a
ship at any given angle of inclination will remain the same all the
time the displacement, the distance apart of the centres of gravity
and buoyancy, and the form and magnitude of the wedges of
immersion and emersion remain unchanged. The form of the
vessel below these wedges may be altered in any way, and to any
extent, without changing the value of G Z, subject to the condition
that the total displacement and the distance apart of the centres of
gravity and buoyancy remain unaltered.

But other variations may follow without changing the stability.
It is obvious that the ship’s sides, which bound the wedges of im-
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mersion and emersion, may undergo any changes of form which are
compatible with the equal volumes of the wedges, and equal dis-
tances apart of their centres of gravity; in other words, compatible
with & &’ and v remaining unchanged in amount. If we turn again
for a time to the case of prismatic bodies (for simplicity’s sake), in
which we can take the sectional areas to represent the volumes,
it will be obvious that A&’ and v will be the same in two bodies,
of which one has the sides spreading outward above the water, but
is vertical below the water-line (as in Fig. 41), and the other has
them vertical above the water-line, and spreading equally below
water, as would be the case if Fig. 41 were turned upside down.

Fig.41.
Fig.42.

The stability of the two bodies will, therefore, be the same if
V, B G, and the angle of inclination are the same.

Precisely the same may be said if the sides of the ship, instead
of spreading outward above and below the water-line respectively,
closed inwards, as in Fig. 42, and in that figure reversed. The
stabilities in these two vessels would be alike, other things heing
cqual as before. The equations of stability take the same form in all
four of the above cases ; but with like dimensions the values in the
cases of Fig. 41 are different from those of case 42.

Again, if the sides of a body, in the region of emersion and
immersion, are straight and at equal inclinations throughout, it is
of no consequence whether they spread outwards above the water,
as in Fig. 43, or spread outwards as in Fig. 44.

Atwood, in his “Royal Society ” Papers, gives a demonstration
of each of the foregoing equalities ; he also shows that the equation
of stability is precisely the same for a body with vertical sides, and
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Fig.44
Fig.43.

for a body whose sides form arcs of a conic parabola. The equa-
tion in both cases is

b tan. 0

GZ-= o4y (cos. 6 + sec. 6) — BG sin. 6,

where b = the breadth at the water-line, and 6 is the angle of
inclination.

We have already seen how Atwood proceeded to apply his for-
mula to an actual ship, by equating the volumes of immersion and
emersion for the whole length of the ship. But in referring to this
matter before, we simply pointed out that if these wedges did not
prove to be equal, it was necessary to so shift the new water-line
as to make them equal.

He suggests two methods of doing this—assuming for the time
being that, although the sections of the body are of irregular form,
they are all equal, and the body is prismatic.

It will presently be seen that both these methods rest upon the
obvious consideration that, presuming the difference between the vol-
umes of the wedges of immersion and emersion, which are first found,
not to be very large—and with usual forms of ships it will not be—
then it may be taken for granted that, if we divide the difference
of volume by the area of the inclined water-line plane, we shall get
the thickness of the slice that must be added to, or deducted from,
the whole immersed volume of the ship in order to make the
wedges equal. This will readily be seen by aid of what follows.

1st Method.—Let W C L (Fig. 45) be the section, W L the water-
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line with vessel upright; bisect it in D; through D draw W'D I/
inclined to W L at the given angle of inclination, 0; let the areas of
the figures, LD L' and W D W’ (taken out to the ship’s side what-
ever its form), be found, and suppose that the former comes out
greater than the latter by an amount represented by a. From D
along D L set off D S, so that

a

DS=wrsmo
A line, wS 7, drawn through S parallel to W' L’ will cut off the
area, LS/, very nearly equal to the area, W Sw. Consegently,
w ! will be the correct water-line.

2nd Method (same figure).—This method consists in first cal-
culating the whole immersed area below W’ L/, and if this is found
unequal to the whole immersed area below W L with the vessel
upright, and the difference is represented by a, a distance, D S, is

set off equal to
a
W L'sin. 0’

and the line w ! drawn as before.

Coming to actual ships, with gradually changing sections, it is
no longer possible to simplify the investigations dealing with one
section only, even in the determination of the inclined water-line,
for the midship wedge sections may be equal and the whole volumes
nevertheless unequal, or the midship wedge sections may be unequal
and the whole volumes nevertheless equal. It is the equality of the
volwmes that has to be secured.

The first object is to fix the point, S, which is, of course, the
same for all sections, and Atwood, in dealing with the matter,
divides the vessel into a large number of equidistant cross sections,
and calculates the areas of the triangles of immersion and emersion
at every section with an approximate inclined water-line through
the middle point of the upright water-line, by the rules for approxi-
mating to the areas of surfaces bounded on one side by a curve.
From these sectional areas he obtains by similar rules the entire
volumes of the wedges of immersion and emersion. If these prove
unequal he obtains a point, S (Fig. 45) by means of the equation

DS = difference between the wedge volumes.
~ Area of approximate water section, X sin, a,
a being the angle of inclination.
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The water-line drawn through S is the corrected one. This
being drawn on each cross section of the ship, the areas of the
triangles of immersion and emersion are calculated anew, and being
summed up as before, will give the volumes of the wedges of

Fig45.

c

immersion and emersion, which will now be equal. The moments
of these wedges about the axis through S can also thus be found,
and their sum (v x % k') introduced into the equation of stability.
The whole process is well described by Atwood, in his 1798 Paper,
in which he practically applies it to an actual ship, employing 34
vertical sections, at a common interval of 5 feet.

In his great work, entitled The Modern System of Naval Archi-
tecture, published in 1865, which may be regarded as a monument of
the ability and labour which the late Mr. J. Scott Russell devoted to
his profession, and which bears upon every page the impress of his own
peculiar methods of treating naval science, the question of stability
is discussed with even more than the author’s usual originality
and abandonment of known and accepted usages. He bases his
stability investigations and modes of calculation upon the principle
that the portion of the ship which is situated near the water-line
may be regarded as the “shoulders” of the ship, tending to keep her
upright, while the portion below may be regarded as tending to
upset her. The amount of labour and skill devoted by him to the
development of this view of stability was enormous, but it cannot
be said to have secured for it gemeral approbation and adoption.
Recalling all this labour and skill, and cherishing, as we do, so
many grateful and pleasant memories of the truly remarkable man
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who exercised them, it is with regret that we are unable to share
the satisfaction felt by him with this mode of treating. the stability
of floating bodies, which, indeed, appears to us open to many
objections. -

In the first place, we are unable to regard the distinction
between the so-called “shoulders” and the so-called “upsetting”
part of a ship as sufficiently well defined, or as sufficiently well
definable. Mr. Scott Russell’s definition was this: “ The shoulder
of a ship is that part which, being under water when the ship leans
over one way, is then left bare, out of water, when she leans as far
over the other way.” As an example, he takes the case of a ship
leaning over to one side, far enough to tmmerse on that side 2 feet
more of her skin than is immersed when she is upright, and then
leaning over the other way, far enough to emerse 2 feet of her skin
which was in the water when she was upright; then “those 4 feet
of her skin in each side which lie between these extreme positions
are what I call the shoulders of the ship.” He goes on to say: “If
we take away from the body of the ship the two shoulders, the
remainder of the bottom, which never leaves the water, I call the
‘under-water body of the ship,’ and this under-water body is the
part tending to upset her.”

It is obvious that the above “definitions” are altogether too
indefinite for any practical purpose. To say nothing of the oversight
of describing the mere “skin” of the ship as “shoulders,” the
language employed leaves out of consideration altogether the fact
that for every different angle of inclination there is a different
volume for the wedges of immersion and emersion, and likewise
leaves out of account all changes depending upon differences of
draught. It is not surprising, therefore, that later on we find the
author giving some extension to the previous definitions by saying
that “we may take the shoulders as meaning those portions of a
ship which, in heeling contrary ways, rise out of, and sink into, the
water,” although we here come upon the verbal anomaly of describ-
ing as a “shoulder,” which is by its buoyancy to sustain weight,
the portion of the ship which “rises out of” the water.

There is no reason to doubt that, notwithstanding this want of
clearness in the definitions of what is intended—arising, as it is
easy to see, from the peculiar method of treatment adopted—Mr.
Scott Russell’s system of calculation, carefully carried out, gives
the same results as other methods. But with the progress of time
the calculations of stability are being so extended, and are now
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made to comprise so many variations of draught of water and
angular inclination, that no practical convenience can result from
describing as shoulders the wedges of immersion and emersion, or
from employing this somewhat involved and arbitrary mode of
viewing the matter. The simpler method of treatment seems to be
the usual one of estimating the lateral movement of the common
centre of buoyancy, and from this ascertaining the “couple” of
stability. :
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CHAPTER V.

Longitudinal Metacentre—General Expression for B M—Change of Trim—Effect on
Stability of Admitting Water into Central Water-tight Compartments—
Consequent Change in Height of Metacentre—Table of Heights of Metacentres—
Inferences therefrom—Effect when Compartments are not Central—Table of
Metacentric Heights under this condition—Inferences therefrom—Effect of
Water-tight Decks.

HitaERTO We have only dealt with the transverse metacentre ; we
will now give a short account of the longitudinal metacentre,
observing that the scientific principles underlying both cases are
precisely the same. When & vessel is inclined longitudinally, the
vertical line through the centre of buoyancy in the inclined position
intersects the vertical through the centre of buoyancy in the up-
right or initial position in a certain point. In the limiting position,
when the angle of inclination is very small, this point is called the
longitudinal metacentre. We can, therefore, see that a determina-
tion of this point is of great service in determining changes of trim,
caused by shifting the weights already on board a vessel in a fore
and aft direction, or by putting moderate weights into her, or taking
them out of her. Referring to Fig. 46, let W L represent the water-
line of a vessel, B and G her centres of buoyancy and gravity
respectively, B G M the vertical through these points. Now,
suppose a weight, w, on board the vessel to be moved forward
through a distance, d, the water-line now becoming W' L. Let
B’ and G’ be the altered positions of the centres of buoyancy and
gravity respectively. A vertical through these points will intersect
the original vertical through B and G in a point, M, which, when
the angle of inclination is indefinitely small, is the longitudinal
- metacentre for the water-line, WI. Through B draw BR per-
pendicular to BM. It is evident that BR = B M tan. 6, where 0
is the angle of inclination of the vessel, also that the wedges, L' P L
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and WP W’ are equal, and BR the distance moved through by
the centre of buoyancy parallel to W L is equal to the horizontal

Fig46.
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distance between the oent.re:of buoyancy of the wedges, multiplied
by ]z), where V = the volume of either of the wedges, and D = the
volume of the total displacement, or expressed otherwise—

B R = Dmoment of wedges about P
n displacement :

B M tan. 0 _ moment of wedges about P )

Therefore, displacement

To determine the moment of the wedges about P, which axis
evidently contains the centre of gravity of the water-plane repre-

Fig.7.
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sented by its trace, W L, referring to Fig. 47, let ABCD and
A'B' C D’ represent sections of one of the wedges made by planes,
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perpendicular to the water-plane, W L, and to the longitudinal
vertical plane of the vessel, at a horizontal distance, d z, apart; the
vertical distance apart of the two planes at that place being « tan. 8;

then the volume of the prism intervening between the two planes
=ADxAA’'Xx AB=ztan 0 x dzxy =z ydrtan.0. Butzydr
= the moment of the section about the axis, PP. Supposing
the wedges to be divided into an infinitely large number of such
prisms; then the volume of the wedges would equal the moment of
the water-line area about the axis, P P’, multiplied by tan. 6, and in
the limiting position, therefore, the volume of the wedges is equal to
the moment of the water-line area about the axis, PP’. Again, the
moment of each of the small prisms=its volume (z ydx tan.0) x z=
@*y de tan. 0 ; and, therefore, the moment of the wedges about the
axis = the moment of inertia of the water-line area, W L, about the
same axis multiplied by tan. 6.

moment of inertia of water-line area % tan. 0
volume of displacement.

. BMtan. 0 =

moment of inertia of water-line area
volume of displacement.

*.BM=

In practice, it is usual to obtain the moment of inertia of the
water-plane with reference to an axis corresponding to the middle
ordinate, and having obtained this, the necessary modification in
order to determine the moment of inertia about a parallel axis
passing through the centre of gravity of the water section is readily
obtained by deducting from the result the area of the water-plane
multiplied by the square of the distance of its centre of gravity from
the axis taken, this process depending upon a well-known property
of the moment of inertia.

Having thus determined the height of the longitudinal meta-
centre above the centre of buoyancy, we may now call attention to
longitudinal inclinations or changes of trim. In the first place,
difference of trim signifies the difference of the draughts of water
at the extremities of a vessel, and the vessel is said to trim by the
head or stern respectively, as the draught of water there is the
greatest. Suppose now the trim is changed, by moving a weight
on board forward or aft through a certain distance, or by other
means, then the change of trim is the sum of the increase in the
draught of water at one extremity, and the decrease in the draught
of water at the other extremity.
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In Fig. 46 let 6 be the longitudinal inclination as before-men-
tioned due to change of trim. The change of trim evidently equals
I x tan. 6, where  is the length of the water-plane; and the shift of
the centre of gravity caused by moving the weight, w, through &

distance, d, evidently equals y’—‘—l,

consequently, G G’ = u;)d
but G G’ = G M tan, 6. Therefore, tan. 0=17Yw—‘é—m;

Ixwxd
andcha.ngeoftnm-ltan.o—DxGM

Supposing we wish to know the moment required to change trim
1 inch at the water-plane, we have

1 _Ixwxd,
127 DxGM’
DxGM.

lx12 "’
and this may be expressed in words as follows:—The moment in
foot-tons required to change the trim 1 inch at the water-line is
equal to the displacement in tons, multiplied by the height of the
longitudinal metacentre above the centre of gravity, in feet, divided
by twelve times the length of the water-line.

When adding moderate weights to a vessel the change of trim is
determined in the following manner:—The weight in the first
instance is supposed to be placed in the vessel directly over the
centre of gravity of the load-water-plane, which will cause her to
retain the same trim, but to displace more water, dependent of
course upon the amount of the weight. The weight may be now
moved to its required position, and the question simply resolves
itself into the change of trim when a given weight on board is
shifted through a certain known distance in a fore or aft direction,
taking into account, of course, the increased displacement due to the
weight added.

When taking moderate weights out of a vessel an operatlon
the reverse of that just described is performed, in order to determine
the change of trim due to such readjustment.*

therefore, wd =

* The object of the longitudinal metacentre, and of its use in determining changes
of trim, was discussed substantially as in the text, and with somewhat greater fullness,

in a paper read by Mr. F. K. Barnes, of the Admiralty, at the Institute of Naval
Architects in the year 1864.
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The stability of a vessel fitted with water-tight compartments,
and having water admitted to one or more of them by means of
collision or otherwise, deserves consideration. It will only be
necessary, however (after what has already been said about
longitudinal trim), to consider the matter here in its relation to
transverse stability. There may be several distinct conditions
set up :—

1. A compartment may be totally filled with water which it
completely encloses.

2. A compartment may be partially filled by water which it
completely encloses.

3. A compartment may have water in it in free communication
with the sea, and at the sea-level for all inclinations.

It is evident that in the first of these cases the stability will be
affected in much the same manner as it would be were the enclosed
water replaced by a solid body equal in weight, and having its
centre of gravity in the same place. This is the case of a water-
ballast compartment being wholly filled with water. If the surface of
the enclosed water be such as to remain always below the surface
of the sea during the rolling of the vessel, it is of little consequence
whether it be wholly enclosed or in communication with the ses,
the result being equivalent in each case to a corresponding loss of
displacement. The admission of this water would, however, as will
be obvious, bring about a change of position in the water-line, the
centre of buoyancy, and the metacentre, which must be newly
calculated, if it is desired to ascertain their new positions.

When, however, as in our 2nd case, a compartment is not full,
and the volume of water within it, although completely enclosed, is
free to alter its form and position as the vessel rolls, we have a
wholly different state of things, something more even than a statical
investigation of the stability at given angles being now necessary.
This is the case of a vessel with a water-ballast compa.rtment partly
filled only; or of a vessel carrying liquid at large in a tank im-
perfectly filled ; and may be approximated to in some cases by loose
cargoes of quasi-fluid, grain, &c., badly stowed in bulk.

But although the complete determination of the change of
stability induced by a case of this kind involves dynamical con-
siderations, an indication of its amount, sufficient for most practical
purposes, may be obtained from statical investigations, which take
into account the form and position of the free water at various
angles of inclination of the ship.
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Mr. F. K. Barnes, of the Admiralty, of whose contributions to
the science of stability we have so frequently had occasion to speak
with praise, has dealt with this branch of the question also, and we
need do little more than go over the ground which he long since
laid out.* We may, however, deal somewhat differently from him
with the details of the investigation.

Let us consider with him, in the first place, the case of a central
compartment being laid open to the sea and filled with water, and
let us, for simplicity’s sake, presume the vessel to be prismatic, and
of rectangular section. Fig. 48 represents its elevation, W L being

Fig4s.
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its water-line before the vessel is injured, and W’ I/ its water-line
afterwards. As the weight of the body proper is not altered by the
admission of the water, the displacement must be the same before
and after the injury; from which it follows that the displacement
of the two end compartments below the line, W’ L/, must be equal
to the whole displacement below W L, and consequently (as the
breadth is everywhere the same), if ! be the whole length, I’ the
length of the inside compartment, d the depth below W L, and
d’ the depth below W’ L, we shall have

d(l-n=dl
and
. l
=dr_7-
This, therefore, is the new draught of water.
The centre of buoyancy before injury is, of course, at one-half

* Bee a paper *‘On Water-Tight Compartments in Ships as Affording Security
gmrmmwmmﬁmvammmmmqumumw,
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the draft (%) from the bottom ; after injury it is %—', and the value

of d’ in terms of d has just been seen.

If b equals the breadth, then before the injury the height of
the metacentre above the centre of buoyancy is

g’(g)x 15
Tbd —"12d°

after the injury this height of metacentre becomes
2a- z')(z)

If we desire to know the height of these metacentres above the
bottom of the vessel, we must in each case add the half-draught, or

=-ll ¥ o-1).

;—l, in the first case, and (—;— in the second case.

Mr. Barnes prepared a table of corresponding heights of meta-
centres which is worth reproduction. In order to adapt it to a
variety of cases, he assumed the breadth to vary from d, the
original immersed depth, or draught of water, up to four times that
amount; and he assumed the length of the central or injured
compartment to vary from one-hundredth of the whole length to

y .. . ! 11
one-half of that length, I’ equalling in succession 160° 10’ &
%. The following is the table slightly modified to suit our nomen-

clature, and omitting the cases in which !’ is supposed to be
rsoth part of [, leaving the remaining three cases:—

and
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Metacentre above Centre of Metacentre above Keel.
Valus of . Value of 1", .
CO%:%?:‘::D‘ Comm e t C()Bl.:lf A t Coglmu::ho t

d 55 083a | 0154 583 d 6305 d
” : , 0625 d " 7292 d
» 3 . | osea " 10416 d
2d - 34 3300 d 83 d 85 d

” ! . 250 & . | e6a
" : » 166 d " 1166 d
3d % 75 d 675 d 125d 1230 d
» ! " 5625 d " 1-2291 d
» ! " 375 d " 1375 d
ad’ % 18d | 12004 | 1834 | 17ba
" ! ” rows | ., 16d

. : " bd o 16d

Mr. Barnes infers from this table that in all cases “ when the
breadth is equal to the depth, and to twice the depth, the height
of the metacentre above the lower edge of the keel is greater after
the compartment is injured than it was before; and, as already
stated, we assume that the volame of the iron forming the sides of
the compartment is equal to zero, and that when the compartment
is empty the centre of gravity of the ship remains unaltered; con-
sequently, also, the stability of the ship is in all these cases greater
after the compartment is injured than it was before. It follows,
therefore, that if sufficient freeboard be given to such ships, to
admit of their immersion being increased to the extent due to the
volume of any one or more of its compartments, they will be quite
safe when the said compartments are injured. It also follows that
ships of the above forms and relative proportions would be lost by
going down bodily in the water and losing their freeboard, and not
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from losing their stability and turning over. The same remark is
practically applicable to the case in which the breadth is equal to
three times the depth.

“ Where the breadth is equal to four times the depth, the meta-
centre falls slightly between the limits taken; but it manifestly
rises again as the bulkheads are placed nearer the extremities of
the ship. :

“ As the breadth increases above this in proportion to the depth,
the relative depression of the metacentre by injury to the com-
partments will be increased ; but it must be borne in mind that in
such cases the metacentre, before injury to the compartments,
would be exceedingly high.”

The foregoing investigation and remarks assume that the injured
compartment is exactly central, and that the ship, therefore, becomes
additionally immersed without change of trim. If this assumption
be not approximately correct, and if a strict investigation be needed,
the same general consideration will apply, but the change of trim
consequent on the admission of the water must be calculated, and
the resulting change in the area of the water-line must be taken
into account in the expression for the height of metacentre. In the
case of the prismatic vessel of rectangular section, it will be obvious
that any change of longitudinal trim, which does not immerse any
portion of the top or deck of the vessel, nor emerge any part of
the bottom, must, with any given displacement, give an increase of
metacentric height, whether the vessel be uninjured or injured,
because it must increase the length, and (in this case), therefore, the
area of the load water-plane.

The case of a vessel divided into longitudinal water-tight com-
partments is also considered by Mr. Barnes, who assumes her to
possess two longitudinal water-tight bulkheads equidistant from
the sides, say one at a distance, ¥, from each side; and, as provision
is always made for letting water into such compartments, if neces-
sary, he assumes that the sea is let into both sides of the ship at
once, the central space between the bulkheads being kept free of
water. Using the same notation as before, and observing that in
this case [ remains always unaltered, and b only undergoes diminu-
tion, we shall have

db-2%)=dbd
and

g b
V=d5—g¥"
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The centre of buoyancy, which before injury is g above the bottom,

is after injury %’, and the value of &’ we now know.
The height of the metacentre above the centre of buoyancy,
which, as we previously saw, is %—2 g before injury, becomes after

inj
jury 9 l b y .
5t (z-?)
Y
Putting for ¥, %, this expression becomes

-2y
lbd

3

SH

For the height of the metacentre above the bottom of the vessel,
we must add the half-draught in each case.

In this case also Mr. Barnes has tabulated the heights of the
metacentres for the cases in which b equals d, 2d, and 4 d respec-
tively, and n equals 100, 10, 4, and 2 respectively. We omit as
before the case of » — 100, and give the others :—

i e ooy : Motasentre above Ksel
B B P P T
i i L o0 | ComEpgents
d 10 083d 0426 d 583 d 6676 d
" 4 » 01044 " 10104 d
" 2 [ <0000 ” ®
2d 10 . 3d ‘1706 d 83d 7956 d
» 4 » ” 104164
» 2 » » ©
4d 10 1'3d 6826 d 183d 1:3076d
" 4 » 1-668d » 1'166d
. 2 » 0000 »» @
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In view of this table Mr. Barnes makes the following remarks:—

“ Where the breadth is equal to the depth, the height of the
metacentre above the bottom of the vessel is greater after the com-
partments are filled than it was before ; and, since from the supposi-
tions we have made, the centre of gravity of the ship is unaltered,
the ship, if stable before the compartments are filled, will be more
stable after they are filled.

“ When the breadth is equal to twice the draught of water, the
metacentre descends when the vertical longitudinal bulkhead is very
close to the ship’s side, and it reaches its lowest position when the
bulkheads are fixed somewhere between one-fourth and one-tenth of
the breadth from the ship’s side. From this position, as the bulk-
heads are placed nearer to the middle line, the metacentre con-
tinually rises as they approach the middle line. The same remarks
apply when the breadth is equal to four times the draught of water;
but the lowest position of the metacentre will not be reached until
the bulkheads are relatively much nearer to the middle line than
when the breadth of the ship is equal to twice the draught of water.”

In lieu of| or in addition to, water-tight bulkheads, water-tight
decks may be employed for dividing a ship into compartments, and
this case needs some remark. If a compartment so formed be com-
pletely filled, without being laid freely open to the sea, the water so
admitted is approximately equivalent to any equal weight in the
form of a solid being introduced into the ship, with its centre of
gravity in the position occupied by the centre of gravity of the
volume of ’tween-deck water admitted. Presuming that the addi-
tion of this weight to the ship does not materially change the area
or form of the water-line plane, then, whether the stability will be
diminished, unaltered, or increased, depends upon whether the centre
of gravity of the added weight be above, coincident with, or below
that of the added displacement* In the case of water admitted

*The above proposition is demonstrated in Shipbuilding : Theoretical and
Practical, of which Mr, Barnes was one of the anthors. The substance of the demon-
stration, which was doubtless due to him, was as follows:—Taking W as the original
weight, w the added weight, a the distance of the centre of gravity of the latter
above the original centre of buoyancy, and ¢ the centre of gravity of the added dis-
placement above the centre of buoyancy: then, 6 being the angle of inclination, and
the usual notation adopted, we shall have for the original value of the righting lever,
GZ

’ W-BM " sin. § - W*BG ‘sin, 6;
and for the new value, after the weight, w, is on board,

(W + w)B; M sin. 0 - (W x w) B;Gy sin.0. - . (L)
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from the sea, its centre of gravity never can be situated above that
of the added displacement; and can only be near to it when it
happens to be admitted above a water-tight deck, just beneath the
original water-line of the ship. In all cases, therefore, the admission
of water sufficient to fill such a ’tween-deck compartment must add
to the stability, and usually must add considerably to it, the amount
added being proportional to the size of the compartment and to its
depth below the water's surface.

Now, if A be the volume of either of the wedges of immersion and emersion in the
first case, and b the distance between their centres of gravity, and A,; and b; be the
corresponding volume and distaunce for the new water-line ; then

WxBMsin. 6=0A;
and
(W + w) By M; sin, 6 =by A;.
Again,
B;G; =BG +GG; - BB,;

(any reader who follows the argument can make for himself the diagram, putting B; a
little above B, and G; a little above G) ; and therefore,

(W+w)BG=W'BG +wBG"* + (W +w)GG, - (W + w) BB,.

But w B G + (W + w) G G is the moment, of the weights added (w) about the original
centre of buoyancy = wa; and (W + w) BB, is the moment of the additional dis-
placement about the original centre of buoyancy = we.

Substituting in equation (1.), we have the stability of the ship at the new water-
line,

=bA - W BGein. 0 -w(a~c)sin. 8, - - (2)
The stability at the first water-line was
=bA- WBGan.0. - - - - (3)
Subtracting (3.) from (2.), we have the difference of stability in the two cases—
=bA) -bA -w(a - c)sin. 6, S ¢ 5]

1f we assume that the weight, w, which has been added, is moderate, and, therefore,
that the form of the water-line area has not materially changed, and that the same
may be said of the wedges of immersion and emersion, then b, A; is practically equal
to b A; and the difference of stability at the two draughts becomes simply

= -w(e~-c)sin. 0;

and if @ = ¢, this quantity becomes nothing, and there is no change in the stability
consequent on the introduction of the weight, w. Thisis the case when the centre of
gravity of the weight introduced coincides with the centre of gravity of the displace-
ment added. If it be above it, a will be greater than ¢, and the stability will be
diminished [by w (& ~ c) sin. 6], and vice versa.

*There is an error at this point in Shipbuilding: Theoretical and Practical—probably a misprint, W
being put for w.
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To the case of a 'tween-deck compartment being slightly injured,
and the water admitted to it being kept down to & small amount,
Mr. Barnes gives special consideration, substantially as follows:—In
Fig. 49 let W L represent the upright water-line of the vessel, and

W

+

c

1

\ :
w ! the surface of the free water in the compartment. Let G and B
be the centres of gravity and buoyancy, and M the metacentre of
the whole ship when upright with the free water on board. Now,
let the ship have a very small inclination, 6, given to her, and let
W, L, w, 1, be the new water-planes corresponding to W L and wl,
and B, the new centre of buoyancy. The shift of the free water
from the upright to the inclined position occasions a transfer of the
common centre of gravity of the ship and free water to the point G,
along a line nearly parallel to BB,.

Let M, be the intersection of the vertical through the point, G,

with the original vertical, BM. Now, since the angle of inclination
is very small,

2 [1de
BM = W ’

where ¥ is the half-breadth of the water-line and D is the displace-
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ment. If the process of investigation which led to this expression be
applied to the case of the free water it will be found that

%]y}d:’z:
GMI = ———W——:

~ where y, is the half-breadth of the free water surface; and it is
evident that when G M, is less than GM (or when % f ‘v?,m is less

than 2 [#°4% _ B ), the ship will flost safely ; if GM, is greater
than G M the ship is unstable; and when GM, is equal to G M the
equilibrium is indifferent.

Taking now the case, already mentioned, of free water in a com-

partment above a water-tight flat, A C, situated a very short distance
below the water-line of the vessel, in Fig. 50, let W L represent the

Fig.50.

water-line of a vessel, w!l the surface of the free water in the com-
partment under consideration. Let G and B be the centres of
gravity and buoyancy respectively, and M the metacentre. Let
0 be the inclination, and B, the new position of the centre of
buoyancy. It is evident that if from G a line, GG,, be drawn
equal and parallel to BB,, that G, is the new position of the centre
of gravity of the vessel, because the wedge of water within the
vessel corresponds exactly with what is known as the wedge of
immersion of the vessel itself, and the distance between G, and the
line, B, M,—in other words, the length, G, P,—multiplied by the
displacement of the ship, is the moment of the upsetting couple,
and
=W x B,G, sin. 6 = W x BG sin. 0.
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The maximum upsetting force, up to an inclination of 90°, due
to such water is evidently when the surface of the free water meets
the water-tight flat at the vessel’s side, for in that case the moment
of inertia of the plane of flotation is the same as that of the free
water surface ; for any further inclination, the moment of inertia of
the plane of flotation exceeds that of the surface of the free water,
and the capsizing force therefore diminishes. The position of equi-
librium will only be reached after much further inclination,

From the preceding remarks it will be clear that in such a
condition as that just described a vessel will not float upright, as we
have shown that the position is one of instability.

‘When a compartment is in free communication with the ses, and
the surface of the water in it is at the sea level for any inclination,
this condition evidently has the same effect as if that portion of the
vessel so occupied with water were, 80 to speak, not part of the
vessel’s volume, and in this case the vessel would have an increased
immersion in volume equal to the volume of water in the damaged
compartment, and the centre of buoyancy and metacentre will
therefore have a new position.

We may, however, further remark that when the moment of
inertia of the surface of the free water on any water-tight flat about
a longitudinal axis is equal to, or greater than, the moment of inertia
of the water-plane about its longitudinal axis, provided also that the
centre of gravity of the vessel is above its centre of buoyancy, the
upright position of the vessel will be one of instability, and she will
loll over to an inclination, dependent of course on the quantity of
water in the compartment, until she arrives at a position of stable
equilibrium. It must, however, be clearly borne in mind that this
condition is based on the assumption that the centre of gravity is
above the centre of buoyancy; if the centre of buoyancy were
situated above the centre of gravity (which is very unusual in &
ship), the upright position would be one of stable equilibrium.
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CHAPTER VL

Purpose of ‘¢ Metacentric Diagrams "—Their Constrnction—Association of Metacentric
Diagram with Displacement Curve—Also with Midship Section of Vessel—
Distinction between Curve of Metacentres and Metacentric—Form of Curve
of Buoyancy Theoretically Considered— Variety in Form of Curves of Meta-
centres—Curves of Metacentres and of Buoyancy of some Prismatic Bodies—
Examples of such Curves for Ships—Capacity and Stowage Diagram—Stability
of the Captain—Stability of a Transatlantic Passenger Steamer—Stability
of the Austral —- Stability of a Raised Quarter-Deck Steamer — Other
Examples of Stability Curves—Effect on Stability of Decreased Breadth and of
Increased Freeboard—Relation of Beam to Stability Illustrated by Case of
Prism—Further Examples of Stability Curves.

WE have now seen that the height of the metacentre of a given
ship above her centre of buoyancy, at a given draught of water, can
be obtained by dividing the moment of inertia of the water-line
area about the longitudinal middle line by the volume of displace-
ment. In order to ascertain, and to describe graphically, the varia-
tions which the initial stability of a ship undergoes when her
draught of water varies, it has become usual to calculate this height
of the metacentre above the centre of buoyancy for several different
draughts of water, and thus to get a series of such heights for the
corresponding water-lines and displacements. Having obtained
these, both the centres of buoyancy and the metacentres are set
off on a diagram, and a curve is passed through each set of points.
It is then assumed (and correctly assumed for ordinary forms of
ships) that the height of the metacentre above the centre of
buoyancy may be ascertained at any intermediate draught of water,
lying within the limits of the calculated points of these curves, by
simply measuring the vertical distance between the two curves,
The positions of the centres of gravity, when known, can also be
indicated in their correct relation to the metacentres and centres of
buoyancy.

Such a diagram, known as a “ Metacentric Diagram” (and first
constructed, employed, and made public by that able naval architect
and calculator, Mr. F. K. Barnes, of the Admiralty), is usually
arranged as shown in Fig. 51. A series of horizontal lines, wl,
w' ', w’'l’, &c., are drawn at heights representing on some co%venient
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scale the various mean draughts of water at which the positions of
the metacentres and centres of buoyancy have been calculated. An
oblique line, 0 p, is drawn across these horizontal water-lines, inclined
to them at an angle of 45 degrees; and from the points at which
this line intersects the respective water-lines are drawn vertical
lines, upon which are set off, on the same scale as before, the
distances down of the centres of buoyancy, b, b, b”, &c., below the
corresponding water-lines, and from these centres of buoyancy are
set up the corresponding metacentres, m, m’, m”, &c. A fair curve
passed through all the metacentres so obtained, and another passed
through all the centres of buoyancy, will respectively be a curve
or locus of metacentres, and a curve or locus of centres of buoyancy.

For a “metacentric diagram ” alone what has been described is
all that is required; but it is often found convenient to have the
scale of displacement represented on the same diagram. For this
purpose a vertical line is drawn through the intersection of the
oblique line before-mentioned with the water-line corresponding to
the load-draught of the ship. From this vertical line are set off, on
any convenient scale of tons, in & horizontal direction the calculated
displacements at the draughts represented by the water-lines before
used ; a fair curve passed through all the points thus obtained is the

Fig.51.
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curve of displacement, as shown in Fig. 51. From this complete
diagram the position of the metacentre can be obtained for any
given displacement, draught of water, or position of centre of buoy-
ancy within the given limits; and in like manner, for any givea
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value of either of the latter, the other corresponding positions can
be obtained.

For example, suppose it is desired to know the metacentric
height corresponding to a draught of 10 feet, for the vessel whose
various conditions are represented by Fig. 51:—A line drawn
parallel to either of the water-lines, from the 10 feet mark qn the
vertical scale will cut the oblique line at the point, W. A vertical
line drawn through that point will cut the curve of metacentres
at M, which will be the required position of metacentre; the same
vertical will cut the curve of centres of buoyancy at B, which
will be the position of the centre of buoyancy *corresponding to
the 10 feet draught, and BM is of course the height of the meta-
centre above that centre of buoyancy. If the 10 feet water-line be
continued, it will cut the curve of displacement at D, and a per-
pendicular dropped from that point on to the scale of tons will
give the displacement corresponding to that draught of water.

Although the method just described is the one usually employed
for arranging metacentric diagrams, there are many others that
may be adopted according to the object in view when constructing
them; but, whatever the method employed, the curves recorded
are essentially the same. For example, it is sometimes found
convenient, instead of placing the curve of displacements and the
metacentric diagram in the relative positions shown in Fig. 61,
to apply them in positions respectively at right angles thereto,
observing that by constructing the curves, as we have seen, about
an oblique line inclined at 45° to the water-lines and verticals, the
same scale of linear measurements can be employed for measure-
ments at right angles to each other. It isa mere matter of con-
venience, therefore, to decide in what relation to each other the
displacement and metacentric diagrams shall be placed.

Again, for certain purposes it is convenient to have the curve
of metacentres shown upon the midship section of the vessel, so
that her metacentric stability under various conditions of draught
may be at once clearly seen. This is illustrated by Fig. 52, which
shows the metacentric curve and that of the centres of buoyancy,
the lines used in their construction being suppressed, excepting the
oblique line, which is necessary for defining the positions of the
centres of buoyancy and metacentres at any given draught of water,
as indieated by dotted lines. This figure represents the section and
curves of metacentres and buoyancy for an actual ship about 370
feet long, and 45 feet broad. W L is her water-line, when fully
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equipped for sea, with cargo, coals, and water-ballast on board.

M and B are respectively the position of the metacentre and centre
of buoyancy corresponding to this condition; wl is her water-line,

Fig.52.

when ready for sea, but without cargo, coals, or ballast on board;
and m and b are the corresponding metacentre and centre of
buoyancy respectively.

In considering such curves it must be most carefully borne in
mind that the locus of metacentres thus recorded is a wholly
diferent locus from that which, following Bouguer, we call the
metacentric, that being the locus of pro-metacentres, all pertaining
to one given displacement, and this (Figs. 51 and 52) indicating
merely the rise and fall of the metacenire as the ship’s draught
is changed, she always remaining in the upright position. We here
see that much confusion is avoided by the introduction of the word
“pro-metacentre;” it is no longer necessary to speak of the metacentric
as a locus of metacentres, or a metacentric curve, but as a locus
of pro-metacentres, the designations, “locus of metacentres” and
“ metacentric curve” being now strictly confined to such curves as
that shown in Fig. 51, which are necessarily associated with varying
displacements.

The diagram just mentioned presents to us at once the limit to
which it is possible, at every draught of water within its range,
to raise the centre of gravity of the ship and its cargo or other
load, without sacrificing all metacentric stability. The metacentric
curve furnishes this limit. Let any draught of water whatever,
comprised within the diagram, Fig. 51, be taken, say that already
used as an illustration, viz, 10 feet. All the time the centre of
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gravity is situated below the point M, the ship will possess meta-
centric stability, and will float in the upright position in smooth
water. If the centre of gravity should be situated at some point,
G, above the metacentre, M, then the ship, even in still water, will
roll either to port or starboard,in search of a position of stable
equilibrium. When and where she will find one can only be
ascertained by bringing into use, in some form or other, the
fundamental formula of stability for larger angles of inclination, viz:

Gz=" "V"" — BG sin.a.

In constructing such curves, although their use is limited within
certain fixed light and load draughts of water, it is usually desirable
to calculate points in the curves of buoyancy and metacentres lying
somewhat beyond these limits, in order to ensure correctness in
the curves within the required limits; otherwise, unless the number
of points calculated is unusually large, there is a risk of inaccuracy
in drawing in the curves through the points obtained.

The curve of buoyancy for ordinary ships does not depa.rt very
materially from a straight line, especially between the limits of
load and light draught. When it does depart, it is usually concave
to the base-line, but with special forms of vessels it is sometimes
convex to that line, or concave upwards. It is easy to see why, all
this should be so. For any body of regular form, say a prismatic
body of rectangular, or triangular, or parabolic section,* the centre
of buoyancy at any given draught of water will be at a fixed
proportion of the draught of water below the water’s surface.
With a rectangular section it will always be at one-half the depth,
of course; with a triangular, at one-third; with a parabolic, at two-
fifths, and so forth. The respective loci of all such centres of
buoyancy, therefore, constructed as we have described, must of
necessity, in each case, be a straight line. It is also easy to see
that the straight line, representing the locus of centres of buoyancy
for a rectangular section, must lie at a less inclination to the base
(ie., to the horizontal) than a line representing the locus of such
centres for a parabolic section, and this again at a less inclination
than a line representing the locus of such centres for a triangular
section, because the angle of inclination is in these cases that of

* Although ships are not of prismatic or parallel form, we may calculate for them
& mean section, and then assume them to be prismatic, for the purposes of such
general investigations as the present,
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which the tangent is }, 3, and £, respectively. A ship of irregular
but ordinary form would approximate to a compound of, or a
compromise between these three figures, and as at the region of
the water-line the form tends to the rectangular, the curve will
usually be flattest, or at the least inclination to the horizontal near
the top, or when the ship is most immersed, becoming somewhat
steeper as the water falls and leaves the more rectangular parts of
the section, and as the parts of the section remaining in the water
approximate more and more towards the parabolic or triangular
form.

Hence the usual concavity of the curve towards the base-line.
On the other hand, great flare in an immersed section near the load
water-line tends to lift the upper part of the curve of centres of
buoyancy, and, therefore, tends to give the curve convexity down-
wards, but this convexity is very unusual In his work on the
Modern System of Naval Architecture, the late Mr. J. Scott Russell
gives twenty-five different forms of sections, and tabulates their
particulars; and out of these there are but five with curves of
buoyancy which have their convexity towards the base, whilst
three give straight lines (within the limits of the three draughts
of water which alone are given), and eighteen exhibit downward
concavity, the concavity in most cases being very small.

The “curve of metacentres” is susceptible of a great variety
of forma. Being set up, at each calculated position, from the centre
of buoyancy, and the curve of buoyancy, as we have just seen,
approximating to a straight line, the form of the curve of meta-
centres reflects directly and somewhat closely the varying actual
heights of the metacentres at different draughts of water.

Let us consider the cases of a few prismatic bodies of simple
section. Taking, first, a body of rectangular section, floating with
two sides horizontal and two upright, let us observe what form
its curve of metacentres will take, The formula for the height
of the metacentre above the centre of buoyancy is, as we have seen,

BM = moment of inertia of water-line area
- " displacement.

Let us put b for the breadth of the body, and % for the immersed
depth. Then, as the body is prismatic, we may take b to represent
the area of the water-line, and b x h to represent the wolume of
the displacement; and we shall have
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B
12 b®
BM =5k = 12
This is the height of the metacentre above the centre of buoyancy
for each draught of water. If we now give successive values to &
(which means successive draughts of water), say k =1, 2, 4, 8, 16
. L b2 .

successively, we shall have 15’ 94°48° 96 and 103 respectively, for
the heights required. The height, B M, will obviously become less
and less as the depth to which the rectangular body is immetsed
becomes greater and greater. This state of things is represented
in Fig. 53, which shows the curves of centres of buoyancy marked

Fig53.
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B, and of metacentres marked M, for this case of such a rectangular
prism. The height up of the centre of buoyancy above the base-

line will of course be% for every draught of water. The fraction

>, diminishing in value as tho height, %, increases (the breadth, b,
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remaining unaltered), it is clear that the curve of metacentres will
approach continually nearer to the curve of centres of buoyancy
as the immersion is increased. On the other hand, as the height, 4,

diminishes, the value of the fraction % increases, and the curve of

metacentres rises continually higher above the curve of centres of
buoyaney, and of course springs to immense heights as the draught
of water approaches zero. If, for example, we assume the figures
with which we have been dealing to be feet, and put the breadth
b= 25 feet, the height, BM, will for a draught of 5 feet, be
slightly over 10 feet, while for a draught of 1 foot, it will be 52
feet, for a draught of 6 inches, 104 feet, and for a draught of 1 inch,
625 feet, the limit being infinitely great.

If, instead of a rectangular prismatic body, we consider a trian-
gular one with two equal sides floating apex downwards, calling
the breadth at the water-line (so that b will now vary with the
draft of water), and k the immersed depth as before, we shall have

bB

12 b2
BM = 47 = g

2

the displacement now obviously being one-half of what it was
before. The form of the locus of metacentres, therefore, it is at
once seen, will be very different from that in the last case (with
rectangular section), because of the variation of b, the breadth,
which will now take place.

If we call the angle of the immersed apex, 2 6, we shall then

establish a fixed relation between b and %, because we shall have

§b—ﬂ = tan, 6, and b = 2 A tan. 9, and we can then write

42 tan? 0
BM = R
As the tangent of an angle increases from zero up to infinity, as
the angle increases from 0 to 90° (being 1 at 45°), and as we have
here the square of the tangent entering into the expression for
BM, it is easy to see that the height of the metacentre above the
centre of buoyancy increases largely with the increase of the angle
immersed, and therefore we shall have a different locus of meta-
centres for every change of this angle. But, presuming the apex
angle to be fixed, and called 2 @, we shall then have

2 . tan2 0
—'3'l:an. .
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BM=§hcan.=a.

Tan.2 a will now be a fixed quantity, and this multiplied by $rds
the immersed depth of the triangle, will be the height of its meta-
centre above its centre of buoyancy. That height will therefore
vary directly with the immersed depth of the triangle, increasing
as the depth increases, and diminishing as it diminishes. This
locus of metacentres must therefore be a straight line, as illustrated
in Fig. 53, for the triangle there shown by the line marked M, the
corresponding locus of centres of buoyancy being marked B, It
will be always a straight line for a triangular prism, whatever be
the apex angle.

Loci of centres of buoyancy and metacentres for a prismatic
vessel of circular section will both be straight lines, the locus of
centres of buoyancy being an inclined line, and the locus of meta-
centres a horizontal line, the metacentre for every draught of water
being at the centre of the section. This is shown in Fig. 53, where
the line, By, is the locus of the centres of buoyancy, and the line, M,
that of the metacentres. The locus of centres of buoyancy and that
of the metacentres in this case meet when the whole section is
immersed, the centre of buoyancy and the metacentre being then
coincident.®* In the figure they are only carried to the immersion
of the lower semicircle.

It has been said that the curve of metacentres for actual ships is
always convex to the base of the diagram; but this is not correct,
as any one who carefully considers the expression for M B, and
remembers what various forms ships assume, will readily discern.
In his Theoretical Naval Architecture, Mr. Thearle gives a diagram
of metacentric curves such as we produce in Fig. 54, in which curve
A A represents certain of H.M. gun-boats; B B ships with a pro-
jecting armour shelf like that of H.M.S. Devastation; CC an
ordinary broadside iron-clad; and D D, which is concave to the
base-line, a man-of-war brig with a rising floor. M M he gives as
representing curves of the character ordinarily met with, the value
of BM usually increasing very rapidly as the draught diminishes.
“This is especially the case,” he correctly says, “in vessels having
a very flat floor; as the moment of inertia of the water-plane

* In the paper, *“ On Curves of Buoyancy and the Metacentre for Vertical dis-
placements,” Ly Mr. Stanbury, in the Annual of the Royal School of Naval Architec-
ture and Marine Engineering, for 1872, several equations for such curves will be found.
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remains very considerable, while the displacement becomes almost
zero. If, however, the vessel has a very rising or a hollow floor,

N\, Fgss /

b= | gt
A
B

™ - -

4.W.L.

the curve of metacentres is flatter, being, indeed, in some cases
slightly concave with regard to the water-lines in the diagram.”
In a “ Note on the Geometry of Metacentric Diagrams,” read at the
Institution of Naval Architects in 1878, Mr. W. H. White gives cor-
roborative diagrams calculated at the Admiralty, which we have
reproduced in Fig. 55. We have brought the several curves into a
single figure, making the horizontal dotted line the common load
water-line of all the cases. A A is given as a common case for war-
ships of ordinary form. BB illustrates the case of a “Symondite” or
“ peg-top ” vessel, in which again the curve of metacentres is con-
cave to the base-line, and the height of the metacentre above the
curve of buoyancy decreases as we pass from load to light draught.
CO is given as representing such a ship as the Incomstant, the
curve of metacentres being nearly horizontal; and D D exhibits
a case in which this curve drops slightly as it passes from the load
draught to a lighter draught, then becomes horizontal, and after-
wards rises as it passes to a still lighter draught. In speaking of
a similar curve in his Manual of Naval Architecture, Mr. White
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says the condition of things described in our last sentence “fre-
quently occurs in merchant-ships of deep draught (in proportion
to their beam) when fully laden, and with approximately vertical
sides in the region between the load and light lines.” . . . “The
highest position of the metacentre on these ships,” he adds, “ usually
corresponds to the light line,

and the lowest to a draught N\ Fg 6. -
intermediate between the load \

and light lines. Very fre-

quently the heights at the load B 4

and light lines are nearly ¢ ¢
equal, and the metacentric r\\\ /
locus lies wholly below the D

load line. In war-ships, on the
contrary, that locus usually

/
/
lies wholly above the load line, / /
the ratio of breadth to load /
draught being greater than the / /
7
/

corresponding ratio for mer-
chant-ships — the range of
draught from the load to the
light condition being much
less for war-ships than for
merchant-ships.”

The principal value of these
diagrams of metacentres at :
various draughts of water lies, of course, in the facility they give for
indicating the stability of the ships at those various draughts when
the corresponding positions of the centres of gravity are known.
Mr. John Inglis, shipbuilder, of Pointhouse Shipyard, Glasgow, has
taken a leading part in the development of this very important
matter. Fig. 56 is a reduced copy of a diagram with which he has
favoured the author, and which exhibits the system that he pur-
sues.* The horizontal scales at the bottom of the figure are two in
number, the one being a scale of feet for showing the height above
the floor and ceiling available for the cargo, the zero being at the
top of keel, and the cargo space commencing somewhat more than
2 feet above it ; the other being a scale (also in feet) of draught of
water, and the stowage of cargo, on the assumption that the cargo
is of such a specific gravity as to bring the ship (when filled with it)

'SudloWhito’lKquNMArchw second edition, p. 94.
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to her designed load draught, and is poured in, so to speak, in such
manner as to keep its surface always level. The upright scales are
also two in number, the one being a scale of cargo capacity in cubic
feet, from which may be read off the quantity of the homogeneous
cargo on board at any time by means of the “curve of capacity” to
be presently mentioned; and the other being a scale of feet, set off

wam \<

o \

49,000 l\ \ /0
§§_~ /,—
[t~ e
o] O Tt "
N
20,000 Gk\\ \

20,007

10,000 1

» 13 7 [ 15 I 13 13 u 10 [}

above the top of the keel, serving as a scale of heights for centres
of gravity and metacentres. The curve, A A, is the curve of capacity
before-mentioned ; by taking any point upon this curve, and pro-
jecting it horizontally upon the vertical scale of capacity, the
number of cubic feet on board (from which the number of tons
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which it weighs may be inferred, there being allowed in this
instance 585 cubic feet per ton of dead weight, or a specific gravity
of *615) can at once be seen; while projecting the same point ver-
tically downwards upon the horizontal scales, the corresponding
depth of cargo in the hold, and the corresponding draught of water
of the vessel, can be read off. The curve marked G C, exhibits from
point to point the heights of the centre of gravity of the homo-
geneous cargo, these heights being read off from the vertical scale of
feet at the side of the figure; the curve, G G, represents the heights
of the common centre of gravity of both the ship and the cargo;
and the curve, M M, represents the heights of the metacentres
(within the requisite limits), both of these latter sets of heights being
read off from the same vertical scale at the side of the figure. A
comparison of the curves, G G and M M, at any point exhibits the
measure of metacentric stability which the ship possesses, with the
corresponding quantity of homogeneous cargo of the given specific
gravity on board.

In arranging this diagram, and making the assumptions as to
specific gravity of cargo and stowage on which it rests, it is pre-
sumed that the worst case which need arise is provided for, because
the cargo is the lightest possible compatibly with its being homo-
geneous, and yet bringing the ship down to her load draught,
observing that its assumed specific gravity (‘615) is less than one-
half that of coal. If any part of the cargo be heavier than the
homogeneous cargo here considered, it may be inferred that this
heavier part may be placed low, so as to bring down the centre of
gravity and add to the stability—add to it, both by being itself
placed low, and by displacing, so to speak, part of the lighter
homogeneous cargo. It may be feared, however, that the exigencies
of trade under which ships are loaded do not always admit of
the heaviest portion of the cargo being placed low down in the
hold; in fact, cases have often come to our knowledge, and must
have come to the knowledge of many, in which parts of machinery,
armour-plates * and other heavy materials have come to the wharf
for shipment after most of the cargo was on board, and doubtless
have often brought the centre of gravity so near to the metacentre
as {0 leave much too small a margin of stability for sea conditions.

* We remember an instance of two ships, sailing from the Humber on successive
Saturdays, being sunk on the Dogger Bank in consequence of armour-plates delivered
late for shipment, and stowed high, getting adrift, and breaking their way out
tbrough the bottom.
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But the greater the tendency that exists in trade conditions to
disturb the conditions of stowage which science would suggest,
and which the shipbuilder would fain provide, the greater is the
necessity for all those who have to do with ships being thoroughly
informed respecting the elements essential to safety ; and this con-
sideration it is which adds so much to the merit of Mr. Inglis, and
of all those who contribute to formulate, and exhibit in diagrams,
the actual conditions of merchant ships.

An examination of the diagram, Fig. 56, reveals the fact that
when all the cargo is out of the ship, the curve of centres of
gravity has crossed the curve of metacentres, and the metacentre
has fallen below the centre of gravity. In the light condition,
therefore, the ship is unstable in the upright position, and needs
ballast to enable her to float in that position. How much ballast
was essential to safety this diagram does not show, because that
depends upon the greater or less rapidity with which the ship
acquires stability as she inclines from the upright, and upon the
magnitude of the angle of inclination, through which the continued
acquisition of stability proceeds. This can only be shown by the
ship’s “curve of stability,” or by some equivalent means—a fact
which should put the reader on his guard against attributing to
these “curves of metacentres” and of centres of gravity any more
value than they possess as indications of the stability of vessels,
in the upright or mearly upright position in various conditions
of lading. They cannot of themselves furnish any complete or
satisfactory account of a given ship’s stability. Unless more is
known of it they must not be relied upon, even when indicating
a good “ metacentric height.” * When curves of stability at various
draughts of water have once been worked out, or when similar facts
are known for ships of closely similar forms, then the relation
between the metacentric curve and the curve of common centres of
gravity of ship and cargo may be sufficient; but the “metacentric
stability ” of cargo-carrying ships cannot alone be regarded as a
sufficient indication of safety at sea, even for a steamship, and still
less for a sailing ship.

A signal instance of the impropriety of taking the curve of
metacentres to furnish a complete account of a ship’s stability is
illustrated in Figs. 57 and 58. Fig. 57 shows the relative positions

* The ‘ metacentric height " is the height of the melacentre above the cenére of
gravity.
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of the metacentre, centre of gravity, and centre of buoyancy under
various conditions for H. M. late S. Captain, and Fig. 58 shows the

curve of stability of the same ship Fig57.
calculated to a mean draught of
25 feet 4 inches, or corresponding I

to a displacement of 7,907 tons,
and with a metacentric height of ¢
2:66 feet. Referring in the first K
case to Fig. 57, MM is there the a’w |
curve of metacentres, and B B the 1 10
curve of centres of buoyancy at
corresponding draughts of water.
G, the centre of gravity for a dis-
placement of 7,907 tons with 617
tons of coal, and fully equipped,
giving a metacentric height of 2:66
feet, at & mean draught of water
of 25 feet 4 inches; G, is the
centre of gravity corresponding
to a displacement of 7,790 tons /J
with 500 tons of coal, and fully | |
equipped, giving a metacentric 8
height of 26 feet at a mean draught of 25 feet § inch. Similarly,
Gg, G,, G, are centres of gravity corresponding to different con-
ditions of  the]ship with varying displacement, but in each case
the metacentric height is less Figés.
than that due to a displace- [, —
ment of 7,907 tons, including fl- \l\
617 tons of coal, and the [~ .
ship fully equipped at mean ° 07 #TwT et a0t ag
draught of 25 feet 4 inches, viz..—2'66 feet. Now, referring
to Fig. 58, which is the curve of stability calculated to those
conditions of the ship which give the greatest metacentric height,
we see that the curve reveals the fact that the range of stability
is only 543°, and the maximum stability is reached at 21°, where
it is only 7,100 foot-tons; or the arm of the righting couple is less
than 1 foot. These features of danger would in many cases be
overlooked should the curve of metacentres alone be held to afford
sufficient information concerning a ship’s stability.

It may be added that Mr. White, in his work before quoted,
gives an example of a ship in which the metacentre is below the

o\
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centre of gravity, not only when the ship is light (as in Fig. 56),
but also when she is loaded, and he says with reference to it, “this
vessel represents a class which is successfully employed in certain
trades, with the frequent use of water-ballast when homogeneous
cargoes are carried.”

In Figs. 59 and 60 we give the case of a transatlantic passenger
steamship, with tracings and full particulars of which we have been
favoured by Messrs. J. & G. Thomson, of Glasgow. The curve of
metacentres, Fig. 59, shows the relative positions of the metacentre
and centre of gravity of the ship in several conditions. The fol-
lowing are some of the valves of the “ metacentric height”:—

A draught of water of 25 feet corresponds to the conditions of
2,500 tons of cargo, and 900 tons of coal being on board. @, is the
centre of gravity in this case, when the cargo is all below the lower
deck, and the coal-bunkers are full. The metacentric height is then
2:G feet. If the cargo be supposed homogeneous and to occupy the
holds and ’tween-decks up to the main-deck, the centre of gravity
is then raised 1'5 feet, leaving a metacentric height of 1°1 feet.

A draught of 23 feet corresponds to the condition of the cargo
on board being 2,400 tons, with coals out, but ballast-tanks full.
G, is the centre of gravity in this case, when the cargo is all below
the lower deck. The metacentric height is then 29 feet. If the
cargo be supposed homogeneous, and to fill the ship up to the main-
deck, the centre of gravity is then raised 1-9 feet, leaving a meta-
centric height of 1 foot.

A draught of 22 feet corresponds to the condition of 2,300 tons
of cargo being on board, the ship being without coals or water
ballast. Gy is the centre of gravity in this case, when the cargo is
all below the lower deck. The metacentric height is then 17 feet.
If the cargo be homogeneous, and extend up to main-deck, the
centre of gravity is then raised 2-0 feet, leaving no metacentric height,
the centre of gravity in this case being ‘3 foot above the metacentre.
If now 900 tons of cargo be taken out and 900 tons of coals (the full
supply) be put into the bunkers, the draught of water will of course
remain the same, but, presuming the remaining 1,500 tons of cargo
be stowed away below the lower deck, G, will be the new centre of
gravity, giving a metacentric height of 1'2 feet. But if the 1,500
tons of cargo be homogeneously disposed up to the main-deck, the
centre of gravity will be raised 1-1 feet above G,, leaving a meta-
centric height of ‘1 foot.

With coal-bunkers and water-ballast tanks full, but with no
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cargo on board, the ship draws 187 feet, G is her centre of gravity,
and her metacentric height is -5 foot.

Fig.59.
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With 550 tons in coal-bunkers and water-tanks all full, the ship
draws 177 feet, and her metacentric height is 1 foot, G, being then
her centre of gravity.

With coal-bunkers full and no water-ballast or cargo on board,
the draught is an inch or two less, but the centre of gmvit'.y7 is then
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‘9 foot above the metacentre. The necessity of the water-ballast
is in this case manifest. -

In remarking upon this case, Messrs, Thomson say:—“If we
assume that the cargo is homogeneously stowed to the main-deck
instead of to the lower, then, instead of 2:6 feet, 17 feet, and 29
feet, a8 given above, we shall have 11 feet, ‘8 foot, and 10 foot.
These last conditions are neither of them likely to exist, as in most
cargoes there is sufficient variation in density to allow of the centze
of gravity of the cargo being very much lower than it would be if
homogeneous, by merely putting the heavier parts below. From
this, however, it will be seen that the worst possible condition the
ship can get in, when water-ballast is available, is with a metacentric
height of 1 foot. The condition of no cargo in, but all bunkeis and
ballast-tanks full, is shown. The metacentric height in this condition
is *5 foot. This is scarcely sufficient to enable her to be worked
easily in port. But with her bunkers filled to the lower-deck, and
ballast-tanks full, she would have a metacentric height of ‘9 foot.”

Fig. 60 shows the stability of this ship under various conditions,
at all angles of keel from the upright to beam-ends position. The
following table gives the principal particulars in a convenient form:—

To Lowrr-Dxck. To Mam-Dxcx.

Draught. 21 21 81t B (| 22fL | 22M8. | WAL

mIme.l%n'ime 1500 | 2400
Condition. oy G | pomt Tos Ourol

Coals out. and
t;:n.ks Stores in.|| in. | out.

F:

GM, . . . ... 1206 | 17 29 2+6 17 |-81] 10 {11
BG, . ... .. 678 | 628 | 470 | 465 (|78 | 826/ 661 (612
Displacement, . . . | 6,450 | 6,450 | 6,852 | 7,575 | 6,450/6,450| 6,852 |7,575
hting moment
when deck edge u} 6,654 | 8,286 |13,656 |12,975 | 3,310(1,805| 6,136 |6,423

N o, Tigbting | |15.667 | 13,384 | 24,701 (19,816 8,855,830/ 11,785 |9,809
Rightingmomentat90°, | 7,160 |11,255 (19,528 |13,783 | 806 0 4,933 2,878

My, M sews | e e | o | o8] s1] se"| s
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The curve of greatest stability, A A, Fig. 60, corresponds to the
condition of 23 feet draught, with 2,600 tons of cargo stowed below
lower-deck, with all the coals consumed, but with her water-ballast
tanks full. This would roughly correspond to the state in which
such a ship, having left Europe with a full cargo of European
exports (which are usually much heavier, bulk for bulk, than a
homogeneous cargo filling the ship up to her main-deck at the
same draught) would, after a protracted passage, arrive at New
York.

The next best condition as to amount of stability is that illus-
trated by curve, BB. The ship is still stowed as just stated, as to
cargo, but now has her bunkers full of coal in lieu of water-ballast.
She then draws 25 feet of water.

The curve of stability next in order of magnitude is C C,
corresponding to the same amount and stowage of cargo as before,
but with coals and stores consumed, and the water-ballast tanks
empty, the draught now being 22 feet.

On comparing the curves, BB and CC, it will be seen that the
lever or arm of stability at moderate angles of inclination is con-
siderably reduced as the coal and stores are consumed; but at the
large angle of 56 degrees the two curves cross, and the lengths of
the righting levers become equal in amount; while from that incli-
nation onward they do not greatly differ. The amount of the
stabilities, of course, differ in proportion to the differences of
displacement. ’

Curve DD illustrates the state of the stability (as to righting
lever) at a draught of 22 feet with coals in, and 1,600 tons of cargo
below the lower-deck.

In all the above cases it will be seen that the righting lever
increases up to angles of nearly 60 degrees, and the lowest of the
curves indicates a maximum length of lever of over 2 feet.

The worst condition in which a ship of this description need find
herself, as regards stability, is that of having on board at sea homo-
geneous cargo stowed up to the main-deck, and with all her coals
and stores consumed. In this remark we take no account of the
ship’s condition when without cargo, because, however inconvenient
it may be to have ships (as so many recent ones are) devoid of
initial stability in port, or possessing extremely small stability there,
their condition ought to be understood, and danger ought to be
avoided. But a ship at sea is liable to various displacements and to
protracted voyages, and may unavoidably find herself with coal and
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stores gone, but cargo remaining, and in this state exposed to stormy
weather. This vessel would then have no metacentric stability
without water-ballast, but, with water-ballast in, she would possess
the amount of stability indicated by curve EE, with a maximum
righting lever of 1§ feet.

Itis true that such a ship as this would have much less stability
than the last-mentioned at large angles of inclination, with her coal
on board, and a homogeneous cargo to the main-deck, then drawing
25 feet of water, and therefore too deep to use water-ballast freely;
but she would still possess a very large range of stability, and her
stability could be continually increased by the substitution, weight
for weight, of water-ballast for coal consumed, always approaching
the condition indicated by curve EE.

Fig. 61 represents the curve of metacentres of the Orient Line
steamship Austral, as produced at

i0.61. 1 the time of the inquiry into her
JJ\\ ' i "™ loss. BB, is the ::lurvi of buoy-
om0 ancy, and M M, the curve of meta-
]’ centres. Two other curves, DD
and D, D,, are curves of displace-
o0 ment, the former for fresh-water
and the latter for salt-water; EE
is a curve representing the tons
per inch of immersion at various
draughts of water. The vertical
lines in this diagram indicate the
draughts of water measured upon
the scale at the bottom of the
diagram. The heights of the meta-
" centres and centres of buoyancy
are measured upon the vertical scale
of feet on the right-hand side
of the diagram. The centres of
gravity are shown upon the same
scale, being joined with the metacentres by a dark line in each case.
Centre of gravity, G (with its corresponding metacentre and centre
of buoyancy) is for the load-draught of the ship (26 feet 6 inches)
laden with a homogeneous cargo (measuring 100 cubic feet per ton)
and with bunkers, tanks, &c., full G, is the centre of gravity
laden with the same cargo as before, but with coals, water, and
stores consumed, and ballast-tanks full. The position, G,, was given
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as the centre of gravity at the time of the accident which occurred
to this ship in Sydney Harbour, 11th November, 1882. It will be
seen that in all the above cases the centre of gravity is given as a
little (about 1 foot 3 inches) below the metacentre. Gj is.the centre
of gravity when the ship is laden with a homogeneous cargo, but
with all coals, water, and stores consumed, and shows the vessel to
have, when in this condition, a negative metacentric height, when
upright, of about four-tenths of a foot, which would cause her to
loll over until a position of rest was found. G, represents the posi-
tion of the centre of gravity when the ship was inclined at (Glasgow
on the 6th August, 1883, after her return from the scene of the
accident, and indicates that, under the conditions of the inclining
experiment, she possessed a metacentric height of about 16 feet.
G; is the centre of gravity of the hull and machinery of the ship
without coals, cargo, or stores, but with the water-ballast tanks
filled, the draught of water being 19 feet 3 inches. G, is the centre
of gravity of the hull and machinery under similar conditions, but
with the important exception of the water-ballast tanks being
empty, and shows the vessel to have, when in this condition, a nega-
tive metacentric height of eight-tenths of a foot, and represents the
condition under which she would leave the hands of the builders,
with water-tanks empty. It will be observed, however, from the
position of G and G, in this diagram that the metacentric height of
the ship, when light—that is without cargo, coals, or stores—may
be increased by over 2 feet by simply filling the water-ballast tanks
with water. The vertical scale of tons on the right-handside of
this diagram represents the displacement of the ship at various
draughts.

Fig. 62 represents curves of stability prepared by Mr. Thomas

Lo Fig62.
2
1 _
15
!
i i
10 c N . : )
l} i 1} H
: H : i
] ! i : ! 1 ! :
T T T~ N\
] B h !
H i :
[ 10° 20° »* €0° 60° vo* 70° 80°

Phillips, Lloyd’s Surveyor, for a raised quarter-decked screw-steamer
of the well-decked type. The dimensions of this vessel are—Length,
2675 feet ; breadth, 355 feet ; depth, 19-7 feet; tonnage under deck,
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1,609 tons; gross tonnage, 1,866 tons; net register tonnage, 1,009
tons. Curve A represents the ship laden with a homogeneous cargo,
which entirely fills the cargo holds, the bunkers being assumed as
quite full of coal, the boilers filled with water, all stores on board,
but no water in ballast-tanks, the vessel otherwise being in sea
going condition. The displacement of the ship under the above
conditions is 3,870 tons, the mean draught of water 19 feet 44 inches,
the freeboard 2 feet 44 inches, and the metacentric height -85 foot.
Fig. 63 shows a transverse half-section of the ship in the above con-
dition, denoting the positions of the centre of buoyancy, centre of
gravity of ship and cargo, the metacentre, and the height of the
respective decks. It will be observed from the curve (Fig. 62) that
the angle of maximum stability is 55} degrees, and the righting
moment in foot-tons at this angle is 4,218 ; the angle of vanishing
stability is 96} degrees; and the angles at which the edges of the
exposed main-deck, raised quarter-deck, and bridge-deck become
immersed are 10 degrees, 22 degrees, and 30 degrees respectively.
Curve B, Fig. 62, represents the vessel under all the conditions
a8 described for curve A, but assuming the forewell to be filled
with water, amounting to 267 tons. The displacement is 4,137 tons,
the mean draught 20 feet 64 inches, the freeboard 1 foot 2% inches,
and the .metacentric height 4 feet. Fig. 64 is a transverse half-
section showing the position of the centre of buoyancy and meta-
centre at this draught, and also the position of the common centre
of gravity of the ship, cargo, and water in well; and the height of
the various decks at this immersion. The angle of maximum
stability is reached at 46} degrees, the righting moment at this angle
being 1,820 foot-tons. The angles at which the respective deck edges

Fig.63. Fig64. Fig65.
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become immersed are 6 degrees, 18 degrees, and 27 degrees, and
the angle of vanishing stability is 80} degrees. Curve C, Fig. 62,
represents the vessel when laden with a heavier cargo than in curve
A, the holds not being full, as in the case of the heaviest description
of coals. The displacement and draught are the same as in curve A,
but the metacentric height is increased to 16 feet. Fig, 65 is a
transverse half-section showing the respective positions of the centre
of buoyancy, common centre of gravity of ship and cargo, metacentre,
and decks when in the above condition. The angle of maximum
stability is 60 degrees, and the righting moment at this point is
6,656 foot-tons. The angles at which the edges of the various decks
become immersed are the same as those given in the description of
curve A, the draught of the vessel being the same. The range
of stability is much increased, the vanishing point being at 112}
degrees.

Fig. 66 shows the profile and plan of the vessel referred to

Fig.66.
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in the preceding curves of stability, and exhibits the respective
lengths of the raised quarter-deck, poop, bridge, and forecastle.

Taking the load displacement, as in curves A and C, namely
3,870 tons, the surplus buoyancy due to the parts of the ship above
the water-line is 1,967 tons, or 337 per cent. of what would be the
total displacement if it were wholly submerged. The portion of
the ship between the load-line and the main-deck gives 560 tons
displacement, or 126 per cent. surplus; that due to the sheer of
the vessel is 301 tons, which, added to 560 tons, gives 18-2 per cent;
that due to the quarter-deck is 307 tons, which, added to 861 tons,
gives 23-2 per cent.; that due to the poop is 196 tons, which, added
to 1,168 tons, gives 26'1 per cent.; that due to the bridge is 465
tons, which, added to 1,364 tons, gives 32'1 per cent.; that due to
the forecastle is 138 tons, which, added to 1,829 tons, gives the
total 337 per cent. surplus buoyancy.
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In some remarks* upon the stability of Well-deck Steamers,
based upon curves of stability supplied by Mr. Martell (of Lloyd’s
Register Office), Professor Elgar has considered the case of such a
vessel, 257 feet by 354 feet by 18} feet, with a well 60 feet in length,
bulwarks 5 feet high, and has assumed that there is no other outlet
for the volume of water filling the well than that which it finds
by pouring itself out over the bulwarks as the vessel inclines. The
diagram which he gives shows that although the volume of water
which the well holds (186 tons), reduces the initial stability to
nothing, and keeps the ship unstable up to 10° of inclination, the
stability becomes positive at that angle, when only 98 tons of water
remain in the well. At 20° this water is reduced to 28 tons, and
at 30° the stability becomes the same as if the well did not exist,
and remains the same for all larger angles of inclination. His
conclusion is that, “so far as stability is concerned, the well cannot
be regarded as a serious element of danger.”

Other examples of cargo steamers worked out in Lloyd’s
Register Office in London, and presented by Mr. Martell to the
Load-Line Committee, are given in Figs. 67 to 71 inclusive. Curve
A, Fig. 67, represents the curve of stability of a cargo-carrying
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steamer of the following registered dimensions: length 2895 feet,
breadth 32-1 feet, depth moulded 23'1 feet. The centre of gravity
of the vessel was ascertained by an inclining experiment, no cargo
being on board at the time, and the boilers empty, but with 60 tons
of coal in the bunkers, it was found to be ‘98 foot below the
metacentre. Two hundred and forty tons of additional coal were
then assumed to be placed in the bunkers, and the cargo holds and

* See a “‘Paper on the Use of Stability Calculations in Regulating the Loading of
Steamers,” read at the Institution of Naval Architects, April, 1884,



CHAP. VI] EFFECT ON STABILITY OF DECREASED BREADTH. 105

‘tween-decks completely filled with a homogeneous cargo, which
occupied 612 cubic feet to the ton, the vessel having, when so
laden, 4 feet 7 inches freeboard, which is that required by Lloyd’s
Tables of Freeboard. It will be observed that the angle of
maximum stability is reached at about 40°, the length of the
righting lever at this point being '68 foot, and the stability vanishes
at 77°.

The effect on the stability by decreasing the breadth of this
vessel by 2 feet is well illustrated by curve B, in the above Fig. 67,
the length, depth, freeboard, and the assumed conditions as to the
nature and amount of the cargo remaining the same. The curve
is much reduced, the maximum length of the righting lever being
only ‘43 foot. Assuming this vessel to be fitted with water-ballast
tanks, 2 feet high above the floors of the fore and after holds, thus
raising the position of the centre of gravity of the cargo, which is
taken to be similar in all respects to that previously described, the
vessel's stability is reduced from curve A to curve B, as shown in
Fig. 68. In Fig. 69 curves are shown illustrating the effect upon
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the stability for the same vessel by an increase in the freeboard,
the cargo being in each case supposed to fill the vessel; and also
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the effect of variations in the density of the cargo. Curves A and B
show the difference in the stability, with 6 inches additional free-
board, the homogeneous cargo with which she is filled being pro-
portionately lighter than that which fills her with 4 feet 7 inches
freeboard. There is no material change in the stability under
these conditions, other than that a part of the area of curve A af
small angles of heel is transferred to larger angles of heel, and
somewhat increases the stability at these angles. Curve C re-
presents the stability when the veasel is laden with cargo of the
same density as in curve A, but, having & freeboard of 5 feet 1 inch,
the spaces in the 'tween-decks at the ends of the vessel being left
empty. This curve exhibits a marked improvement in the stability
of the ship, from which it will be seen that, in cases where weseels
have insufficient stability when laden with homogeneous cargo
which practically fills them, it will generally be effective to restrict
the amount of cargo stowed between decks.

Fig. 70 is a longitudinal section of this vessel without water-
ballast tanks, filled with a homogeneous cargo which gives her

Pig0.
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5 feet 1 inch freeboard, but with the spaces shaded in the 'tween-
decks left empty. This vessel has the stability represented by
curve C, Fig 69. The space available for cargo with this arrange-
ment is 102,600 cubic feet, and the spaces in the ’'tween-decks
which are left empty contain 6,700 cubic feet. Fig. 71 shows the

Fig.71.
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vessel fitted with water-ballast tanks in the fore and after holds,
which reduce the space available for cargo by 6,000 cubic feet.
Assuming her under these circumstances to be filled with a homo-
geneous cargo which gives her 4 feet 7 inches freeboard, her
stability would be reduced to curve A, Fig. 68, that is, if the
spaces shaded in the 'tween-decks were left empty. This shows
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that she could be safely laden to 4 feet 7 inches freeboard, with
all cargoes which do not exceed the density of 534 cubic feet per
ton. If 90 tons of ballast consisting of kentledge, or an equal
weight of water in the water-ballast tanks be placed in the bottom
of the vessel, she could load to the same freeboard with a full cargo of
61 cubic feet to the ton, and still have the same stability as is
represented by this curve, but for all lighter cargoes both the
freeboard and stability would be increased.

We have shown in the preceding illustration the effect on the
stability of a vessel of reducing her beam by 2 feet, and there have
been, without doubt, many vessels built of late years in which the
breadth is so reduced, relatively to the depth, that their margin of
stability is insufficient for safety when filled with homogeneous

cargoes.

Perhaps the relation of beam to stability can be better illustrated
by taking a prism of rectangular section 504 feet broad, and immer-
sing it 21 feet in the water, leaving 6§ feet freeboard, and assuming
the centre of gravity to be 3 feet below the water-line, and con-
structing for this floating body a curve of stability marked A, Fig.
72; it will be seen that the angle of maximum stability is 20 degrees,
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and the curve has a range of 38§ degrees. By increasing the beam
of this floating prism by 2} feet, the curve of stability at the same
draught is represented by B in the figure, the angle of maximum
stability being the same as before, namely, 20 degrees, but the
range is extended to 41} degrees. By adding successive increments
of 2} feet to the beam up to 60 feet, and retaining the same amount
of freeboard, 6} feet, the curves, C, D, E, would indicate respec-
tively the stability due to these additions, and assuming the
position of the centre of gravity to remain unaltered, the position of
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the angle of muximum stability will remain unaltered also, although
the amount of stability will be more than doubled, and it would
absorb more than twice the amount of applied force, to heel the
broad prism to an angle of, say 10 degrees, than it would to heel
the narrow prism to the same angle. It will be observed that the
curves, A, B, C, D, E, Fig. 72, produced by varying the beam in this
manner, rapidly leave each other at starting, and converge again at
large angles of inclination, finally meeting in a point at 90 degrees,
or when the prism is on its side and the top and bottom become
vertical, at which point the amount of instability in all cases is the
same. *

Useful particulars relating to the stability of merchant-ships
have at various times been placed before the Institution of Naval
Architects at its annual meetings, and we will add here a few of
the most interesting of them :—

In March, 1882, Mr. J. H. Biles read a paper on “ Curves of
Stability of some Mail Steamers,” his illustrations being taken
exclusively from ships built by Messrs. J. & G. Thomson. We
reproduce these curves in Fig. 73, and have put the particulars

Fuet
Fig.7s.

relating to them in tabular form further on. The curve, S, is that
of the Cunard Royal Mail S.S. Servia, when she has 1,700 tons of
coal and 3,000 tons of cargo on board, assumed to be stowed homo-
geneously. Her deck edge becomes immersed at an angle of 34°,

* For this and other illustrations see an able ‘‘Paper on the Relative Influence of
Breadth of Beam and Height of Freeboard in Lengthening out Curves of Stability,”
by Mr. N. Barnaby, C.B., Director of Naval Construction, Admiralty, in vol xii
of the Transactions of the Institution of Naval Architects.
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and her stability reaches its maximum at 62°, the value of the
righting moments at these angles being given in the table. The
break in the curve at 634° is due to the assumed admission of water

into the forecastle by the forecastle door, which begins to be.

immersed at that angle.

The curve, Ca. 1.is that of another Cunard Liner, the Cafalonia,
when she has 970 tons of coal and 2,950 tons of cargo on board,
assumed to be stowed homogeneously up to the lower-deck. The
curve, Ca . 2. is for the same ship and same weights, but with the
cargo assumed to be stowed up to the main-deck. Her deck edge
becomes immersed at an inclination of 323°, and her stability
attains its maximum at G7° in the first case, and at 65° in the
second.

The curve, T, is that of the Thames, a finelined passenger
steamer belonging to the Peninsular and Oriental Company, assumed
to be loaded with 600 tons of coal and 2,700 tons of cargo stowed
homogeneously to the main-deck. Under these conditions her deck
edge becomes immersed at an inclination of 30°, and her maximum
stability is reached at 674°.

The four curves, Cl (with suffixes 1, 2, 3 and 4), are those of the
S.S. Claymore, a vessel running between Glasgow and the North of
Scotland. She is an awning-decked vessel, but has an opening the
full breadth of the ship in the awning-deck forward at the fore-
hatch, so that if steadily heeled until the deck edge became immersed,
she would begin to take in water at this opening. The curve, Cl.1.,,
was calculated on the assumption that no cargo is carried above
the main-deck, and that no water gets into the opening forward.
The curve, Cl. 2., assumes the cargo to be carried homogeneously
to the upper or awning-deck. In calculating the curve, CI.3 ., it
was assumed that the cargo is so arranged that its centre of gravity
is at the same height as in curve, Cl . 1., but that none of the space
between the upper and main decks, except the poop, excludes
water. For the curve, Cl. 4., the centre of gravity was assumed
to be at the same height, and the ship under the same conditions
as to water-tightness as for curve C7.8. The stability of the ship
would probably never be better than in curve Cl.1., and it need
not be worse than in curve Ci. 4 .; generally it would be something
between those, depending on the stowage of cargo.

The table referred to on the preceding page is as follows :—
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Bighting Moments.
Namo of Vessel. z;% mpﬁﬁ,% %:«f% When - Eﬁ
C.G. Mg_i- mum, | A 90° Li:}‘er

mersed.

ft, in |ft. in [ft. in.| toms. foot, |ft.-tons.|ft.-tons.|ft.-tons.| feet
Servia,. . . |[5150/52 0(26 0[12,360| 36 (32050/59,500 42,700 451
Catalonia, . (1) (430 0(43 0[24 0| 8285| 2-46 (15,450 (32,750/25,900| 395
» - @] . » » ,» | 10 | 8500(21,100{13,800]| 25
Thames, . ..[3920/42 0|24 0| 7,348 -5 | 5000[24,00(15200| 3-28
Claymore, . (1) [2200{29 6[14 0] 1,445| 24 | 2730] 4,565] 4,170 3-16
wo @ wl w | w . | 175] 2.200]8740| 3735| 259
» @ w | w | sl s | 24| 8851415 98
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Diagrams, Fig. 74 to Fig. 77, are also derived from the Zransac-
tions of the Institution of Naval Architects, occurring in a paper
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read by Mr. W. H. White in 1881. In Fig. 74 are shown the curves
of metacentres and centres of buoyancy for a cargo-carrying screw-
steamer, whose dimensions are given in the table which follows.
She has a deep water-ballast tank above her floors. When this ship
is in the light condition, with no water in the ballast tank, but with
her boilers full, the common centre of gravity is at G, about 1-25 feet
above the metacentre, M. If the whole of the cargo spaces were
filled with homogeneous cargo, G, would be the position of the
centre of gravity, about ‘8 foot above the metacentre, her draught in
this condition being 18 feet 3 inches. Fig. 75 shows the curve of
stability, B, given by this position of the centre of gravity.
Assuming the cargo to be so stowed as to give a metacentric height
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of 225 feet with the same draught of water, the centre of gravity
would be at G,, Fig. 74, and A, Fig. 75, is the corresponding curve
of stability.

Fig. 76 shows the curves of metacentres and centres of buoyancy
for a cargo and passenger steamer of the dimensions given in the
table below. G is the position of the centre of gravity when the
ship is light and without water-ballast, the metacentre, M, being then

Fg.76.

*7 foot below the centre of gravity. Assuming the ship to be filled
with a homogeneous cargo giving her a draught of 23 feet, G, is the
centre of gravity, coinciding, in this case, with the metacentre.
The curve of stability corresponding to this assumed condition is
shown by the curve A in Fig. 77. If the cargo were so stowed as to
give, with the same draught of water (23 feet) a metacentric height
of 2:25 feet, the centre of gravity would be at G, Fig. 76, and the
corresponding curve of stability is shown by the curve B in Fig. 77.
@, is the position of the centre of gravity, assuming the ship to be
laden with a homogeneous cargo, which would give her a draught of
25 feet ; the metacentre would then be about 6 feet above the centre
of gravity.

' Moulded ht t | Tosd
ToeotSip | Tengin | Bresan | K000\ R, | Dinfie | RN, |l

ft in| ft. fn | ft. in| f& in. | toms. | ft in, | toms.
Cargo-carrying Steamer, [320 0 | 34 022 3 | 11 4| 1,880 |18 3 | 3,670

Cargo and Passenger 1 1300 0| 39 0 [31 0| 13 6| 3,200 | 23 0 |6,330

In Fig. 78 we give two curves of stability which are of special
interest, being those of two steamers, in the launching condition,
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which were successfully launched upon the Clyde. The ship whose
curve is marked A has a length of 275 feet ; she is 35 feet broad and
21 feet 6 inches deep; her mean draught at launching was 6 feet
8 inches. The ship of which Bis the curve is 430 feet long, has a

Foet Fig.78.
851

- A
3.0-] [~
28 4 ! I

]
2004 '
18 é ; i ' \
1 ! B i i !
o A g B
| T ' ! '
; i H

[3 10" 20° 20 40° s0° 60 70° 0° )

breadth of 43 feet, and a depth of 35 feet 1 inch, her draught at
launching being nearly 11 feet 8 inches. Curve A may be taken as
illustrating the large amount of stability up to comparatively large
angles that a ship may have in the launching condition, while curve
B shows the small amount that may be made sufficient when careful
precautions are taken. The striking contrast between the two
curves illustrates in a very marked manner the great difference that
may exist in different types of ship under approximately the same
conditions. In curve A the stability increases very rapidly at small
angles, attains its maximum at an angle of about 46 degrees; and
then decreases as rapidly, being lost completely at 90 degrees. In
curve B, on the other hand, the stability increases very gradually
up to an inclination of 50 degrees, then a little more rapidly until its
maximum is reached at about 75 degrees; thence it decreases very
gradually, being comparatively little less than the maximum at
90 degrees.
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CHAPTER VIL

Stability of Certain War-Ships—Stability of the Frigates Inconstant, Invincible,
Iron Duke, &c.—Stability of War-Vessels Comparatively easy to Ascertain—
List of War-Ships whoee Curves of Stability are Given—Admiralty Form for
Metacentric Heights and Stability—Serious Diminution of Stability Caused by
Low Freeboard— Monarch’s and Captain’s Compared—Case of the Atalanta—
Effects upon Stability of Differences of Form and Relative Proportions—
Tabulated Examples—Amount of Stability Requisite in Merchant-Ships—
Stability at Large Angles of Heel—The Torpedo-ram Polyphemus—Comparison
of her Section with Wall-sided Section—Investigations in the Geometry of
Curves of Metacentres.

IN the last chapter we considered the stability at various draughts
of water of several merchant-ships, taking into consideration condi-
tions of stowage both favourable and unfavourable. It will be both
instructive and interesting to pursue this branch of the subject, and
in the next place to bring into comparison with those cases the
stability of some of H.M. ships of war, and more especially such of
them as have had their stability more or less called in question,
observing that the height of the centre of gravity undergoes less
variation in a war-ship than in a merchant-ship, owing to most of
the weights of the war-ship being fixed in amount and in position.
In 1871 a large committee of scientific and nautical gentlemen,
presided over by Lord Dufferin, reported to the Admiralty, at their
Lordshipe’ request, upon the qualities of several ships of the Royal
Navy. Among other things they said—* Naval architects have been
induced” (in order to secure accuracy in the fire of their guns) “ to
seek steadiness of platform by diminishing, as far as safety would
allow, the statical stability and stiffness of the ship. In some recent
instances (e.g., the Inconstant and the Invincible) this was carried
to a degree which, together with an alteration in the distribution of
weights during construction, has led to a considerable weight of
ballast being placed on board these ships in order to correct the
crankiness so caused.” It may be well to state at once that the
displacement of the Inconstant was 5,782 tons, and the amount of
ballast put into her was 180 tons, or slightly over 3 per cent.; while
the displacement of the Inwvincible was nearly 6,000 tons,sand the
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amount of ballast put into her 135 tons, or a little over 2 per cent.
It will at once be seen from these figures how little “crankiness”
there was to correct !

The initial stability of the .Inconstant in different conditions as
to weights on board is illustrated in Fig. 79, which represents the
relative positions of the metacentre, centre of gravity, and centre of

Fig75. buoyancy under such conditions.
MM is the curve of metacentres
X ¥ and BB the curve of the centres
of buoyancy at corresponding

draughts of water.
1a, The height of the centre of
g, gravity, G,, which was ascertained
by experiment, was found to be
1'8 feet below the metacentre, 90
tons of ballast being on board at
the time, the draught of water
being 22 feet 94 inches. A fur-
ther 90 tons of ballast was placed
in the ship, which, with the other
weights put on board had the
effect of increasing the draught of
water to 23 feet 10} inches, and
N g the metacentric height to 28
// feet, the centre of gravity of
| “the ship when in this condition
r being indicated on the diagram

by G, .

When the vessel was at a lighter draught, viz, 21 feet 2 inches
with the 180 tons of ballast on board, but with the boilers and con-
densers empty—a condition of things which need never take place
at sea—the ship still had a metacentric height of 166 feet, G, being
the position of the centre of gravity. When all coal, provisions, and
water were consumed, the boilers and condensers being filled—s
condition of things which might possibly happen at sea—the meta-
centric height was increased to 2:05 feet, the draught of water being
21 feet 84 inches. @, on the diagram represents the position of
the centre of gravity in this case.

Fig. 80 is the curve of statical stability of the Jnconstant when
the ship is floating at a mean load-draught of water of 23 feet
10§ inches, the displacement at that draught being 5,782 tons;
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the centre of gravity below the metacentre, or the metacentric
height, at this draught being 2°8 feet, as illustrated in the preceding
figure. The height of the edge of the upper-deck above water,
when floating at this draught, is 15 feet 83} inches, and from the
curve it will be observed that the vessel heels over to an angle of

N

Fig.80.

8 Feet

~—
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33° before the edge of the deck becomes immersed; the righting
moment at this point being 11,362 foot-tons. The angle of maxi-
mum stability is 521°, and the righting moment at this angle is
16,276 foot-tons, the length of the arm of the righting lever, G Z,
being 2:82 feet.

When this vessel has been heeled over to an angle of 724° it
will be observed that she possesses the same amount of righting
force to return her to the upright position as she had at the
moment the edge of the upper-deck became immersed, the length
of the righting lever being about 2 feet. The range of stability of
the Inconstant when in the loaded condition is very large, the
stability not vanishing even with the ship on her beam-ends,

The following are the principal particulars illustrated by this
curve of stability :—

CURVE OF STABILITY OF THE INCONSTANT.

Angle at which edge of deck is just immersed, .  33°

» of maximum stability, . . . . 52%°

,» 1 Do stability, . . . . 105%°

»s  Where stability is the same as at 33°, . . 724°
Stability with deck just immersed, . . . 11,362 foot-tons.
Maximum stability, . . . . . . 16,276
Displacement in tons, . . . . . . b5782

Mean draught of water, -« < .« . 23ft 10} ins.
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Fig. 81 shows the relative positions of the metacentre, centre of
gravity, and centre of buoyancy of the Iron Duke, which is a sister-
ship to the Imwincible, under various conditions of draught of
water and weights on board. MM is the curve of metacentres,
and BB the curve of centres of buoyancy. G, is the centre of
gravity when the vessel is floating at the constructed load-draught
of 22 feet. Owing to the disposition of weights on board, it will be

observed that the vessel has a meta-
7” Fig.s1. centric beight of 8 feet when loaded for
\ sea. G, is the céntre of gravity of the
amﬁ ship when floating at a draught of water
710 of 20 feet 11 inches, and shows the vessel
9  to have a metacentric height of 1-88 feet.
The centre of gravity of the Jron Duke
was ascertained by an inclining experi-
ment, and its position is indicated on the
diagram by G,, the draught of water at
7 the time being 19 feet 10 inches, and the
Lk metacentric height about 1} feet. @, is
\/V the centre of gravity of the vessel when
/ all coals, provisions, and water are con-
y sumed, and with the boilers and engine
. condensers empty. The metacentric
height when in this condition is ‘65 foot, and the draught of water
18 feet 9 inches. This is a condition in which the vessel should
never be placed, even although the whole of the consumable stores
are exhausted. There is no reason why the boilers and engine
condensers should remain empty, and thus unnecessarily reduce the
metacentric height.

It will be noted that, in order to construct the metacentric
diagram of the Iron Duke more accurately, an offset has been cal-
culated at the comparatively shallow draught of water of 14 feet
8 inches, at which draught the centre of buoyancy has been found,
and the point set off on its corresponding vertical, the curve of
centres of buoyancy being extended and made to pass through this
point. The corresponding position of the metacentre has also been
ascertained, and set off on the vertical above this centre of buoy-
ancy, which enables the direction of the curve of metacentres to be
continued accurately beyond the points previously obtained as
described above,

Fig. 82 is the curve of stability of the Jron Duke when the ship

I=
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is floating at a mean load-draught of 22 feet. This curve has been
constructed in disregard of the increase of stability derived, at large
angles of inclination, from the continuous bulwarks on the upper-deck,
and the ship is treated as if she had no bulwarks or forecastle, the

X
50° ou* v* \\l so0*

space enclosed by the central armour-plated battery only being
taken into consideration. It will be seen from the curve that the
angle at which the edge of the upper deck becomes immersed is
314°, the length of the arm of the righting lever being 1-7 feet, the
amount of righting force at this point being about 10,000 foot-tons.
The angle of maximum stability is about 45°, the length of righting
lever 2'4 feet, and the maximum righting moment 14,000 foot-tons.
‘When the vessel has been heeled over to the large angle of 63°, the
righting moment would be precisely the same as when she was so
inclined that the edge of the upper-deck became just immersed.

The angle at which the stability of the Iron Duke vanishes is
84°, that is, supposing the space enclosed by the central armour-
plated battery to remain water-tight, and this space has been
considered in constructing this curve as contributing, as it mani-
festly must, to the stability of the vessel at large angles of inclina-
tion, and more especially as opposing sudden inclining forces. In
the event of the space enclosed by the battery not remaining
wholly water-tight, and water finding access from any cause to the
interior of the battery, such, for instance, as the doors being open
which lead into the battery, then the stability of the ship would be
proportionately diminished, the curve of stability under these con-
ditions being marked A A on the diagram. Supposing these doors
to be open in the battery after the vessel had heeled to about 50°,
the water would flow into the enclosed armoured space and reduce
the range of stability of the ship to about 76°, as illustrated in the

diagram.



Tis STABILITY OF SHIPS. [crAP. vn,

The following are the particulars relating to the curves of
stability of the Iron Duke:— .

CURVES OF STABILITY OF THE IroN DUKE.

Angle at which edge of deck'is just immersed, . 314°
Angle of maximum stability, . . . . . 443°

» . » Do stability, . . . . . . 84°

» Where stability is the same as at 31°, . . 63°
Stability with deck just-immersed,. . . 10,0215 foot-tons.
Maximum stability, .. . . . - 140006
Displacement in tons, - . . . . . . 5895
Mean draught of water, . . . . . 22 feet.

In Fig. 83 we have brought together the curves of statical
stability of several of H.M. ships, a careful study of which, in

" Fig.85. .

5. Peter the Great. 10. Monarch.

conjunction with the table of particulars which follows, will be
found interesting and instructive. To add to its interest we give
also, in the same figure, some curves of ships belonging to foreign
powers, the particulars of which will also be found below. These
curves all refer to the fully laden condition. The low freeboard
ships in our own Navy, such as the Devastation, Clycops, &c.,
differ considerably from the simple monitor, such, for instance,
‘a8 the Mj¢lner of the Norwegian Navy, by having a central breast-
work of great volume, which adds materially to the effective height
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of Mgt
Name of Vessel. b’il‘.:'fﬁgu_ m Dﬁ;‘:‘ l?l"i;o%n‘j:l: (;;o:;;.r:
of
Gravity.
Low-Smzn Smps. ft. i | f in fr. in f.
Glatton, . . .| 245 0 54 0 19 0 4,910 Pure ‘
Mjolner, . . .| 187 6 45 6 11 4 1,566 | 138 }Monih;n.
Miantonomoh, .| 250 0 55 2 14 3 3,842 | 158
Devastation, . .| 285 0 62 3 26 