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INTERACTION 

by Dr. Ian W. Dand, B.Sc., Ph.D, F.Eng, FRINA  BMT SeaTech Ltd. 

1. INTRODUCTION 

When ships come close to each other, one is apt to 'feel' the presence of the 
other to a greater or lesser degree. This may be manifest in a number of 
ways, ranging from involuntary speed changes to catastrophic (and again 
involuntary) course changes which may lead to collision, or grounding. 

Of course, it is wise to avoid these sudden, unexpected occurrences by leaving 
plenty of sea room between one ship and another. But this is not always 
possible : ships in a long narrow approach channel have to pass each other 
and some (tugs and pilot launches for example), by the very nature of their 
work, must go in close to the ships they are attending. 

The hydrodynamic phenomenon which causes ships in close proximity to 
exhibit this behaviour is known as interaction and its causes and effects are the 
subject of this paper. 

First we look at the causes, then give some practical aspects which incline 
toward operations in shallow or confined waters, and finally consider some 
famous examples of interaction which themselves have spurred research into 
this important and fascinating topic. 

2. WHAT CAUSES INTERACTION? 

Interaction at sea has a number of resonances with similar effects on land. 
The sway that is felt when a car passes (or is passed by) a large lorry on a 
motorway, the suction created by a high speed train passing through a station 
(giving rise to the yellow warning lines painted on platforms) and ground 
effect experienced by aircraft when taking off or landing are all examples. 
Indeed they all arise from the same basic fluid dynamic cause, although with 
ships the phenomenon is more insidious and can strike unexpectedly. 

In the marine world, interaction is caused when the pressure fields around 
ships interact. All ships are in a state of balance in the water, held in position 
at rest by hydrostatic pressures to which are added dynamic pressures when 
the ship begins to move. Dynamic pressures are those which cause (and 
indeed are represented by) the familiar diverging and transverse wave systems 
generated by a ship moving calm water. 



If the pressure system acting over the underwater hull of the ship is changed 
in any way, its state of balance will be affected. It may go faster or slower, 
move off course, sink deeper into the water or rise on to its surface (squat), 
or possibly trim differently. If a ship moves from deep into shallow water the 
presence of the seabed will have an effect on hull pressures as the water gets 
more shallow. Waves also become steeper in shallow water and so do the 
ship's own waves. The upshot of this is that the ship expends more energy 
making its own wave system, so its resistance increases and, unless it changes 
its engine setting, it will slow down. It will also exhibit an increased tendency 
to squat. Finally it will cause, and feel, enhanced interaction. 

In shallow water, ship-ship interaction becomes more severe from these purely 
hydrodynamic causes. Figure 1, from reference 1, attempts to demonstrate 
that, as ships pass close by each other, they may be sucked together or pushed 
apart, turned toward or away from each other, all due to interaction. 

Figure 2 shows some measurements of the surge and sway forces, together 
with the yaw moments experienced by one model ship when passed by another 
on a reciprocal course. The effect of reducing water depth can be seen 
readily and it is of interest to note that transient changes in mean sinkage and 
running trim (squat) also occur. 

As well as ship-ship interaction, there is another form of interaction which 
occurs when a ship is near a canal or fairway 'bank'. As shown in Figure 
3 the bank acts in many ways as a mirror and a ship close to a bank behaves 
as if it was close to its mirror image. The result is that the ship will be 
generally sucked toward the bank. But the wave system of the ship will also 
be affected and the bow wave close to the bank will increase in size and form 
a pressure 'cushion'. This is enhanced if the bank is sloping, when the wave 
may locally 'go critical' and get even steeper. This 'cushion' will tend to 
push the bow away from the bank and, if the speed is high enough, the 'push' 
from the cushion can overcome most of the suction pulling the ship toward the 
bank so that it tends to be pushed bodily away. 

3.        SHIP-SHIP INTERACTION 

Having looked briefly at the causes of interaction, what about its effects and 
how can these be overcome? 

Model tests have shown that, in general terms, ship-ship interaction varies. 

• as the square of the speed. 

• inversely with distance off. 

• roughly as the inverse square root of the underkeel clearance to 
draught ratio. 



These mean that: 

• the faster the ship moves, the worse interaction becomes. 

• the greater the lateral separation between ships, the better. 

• the smaller the underkeel clearance, the bigger the effect. 

So the lesson to be learnt is that the correct speed and distance off are vital 
if interaction is to be avoided, or at least its effects minimised. Of course, in 
some situations it is not possible to reduce speed or increase distance off in 
which case an awareness of the possibility of interaction and its effects is 
important. In such cases "fore-warned is fore-armed". 

With this in mind, the following general effects of interaction for ships 
passing on parallel or reciprocal courses are given. They are illustrated 
diagrammatically in Figures 4 and 5. 

3.1      Head-on Passing 

1. Interaction begins to be felt with the bows of both ships being pushed 
away from each other accompanied by a slight increase in speed. 

2. At the same time, the vessels feel a slight bodily repulsion. 

3. As the ships pass, the 'bow-out' moment turns to 'bow-in' and the 
repulsion reduces. 

4. The 'bow-out' moment then returns as passing continues, but is now 
stronger.   Indeed it may cause both ships to sheer away from each 
other once they have passed.  A slight reduction in speed may also be 
felt. 

5. Finally a weak 'bow-in' moment accompanied by a repulsion may be 
felt. 

Comment 

Passing on reciprocal courses has the merit (from an interaction point of view) 
of being quick so that often the ship does not have time to react to the various 
interaction forces and moments it feels. Usually the dominant effects are the 
'bow-out' turning moments as the ships begin to pass and the stronger bow- 
out moments once passing is almost over. The former is beneficial and is 
usually small enough to control, while the latter is much stronger and, if not 
anticipated, could cause one or other of the vessels to sheer toward the bank 
of a narrow channel. 



3.2      Overtaking 

1. As the overtaking vessel overhauls the overtaken vessel, two things 
happen: 

• a small bow-in moment is experienc xl by both ships. 

• the overtaking ship speeds up and the overtaken ship slows 
down. 

2. As the relative velocity when overtaking may be low, interaction has 
time to take effect and at this juncture, the overtaken ship may be 
caused to turn across the bows of the overtaking ship which may 
perversely turn toward her.   As a result both ships may collide (see 
Figure 5). 

3. If a collision does not occur (perhaps because the vessels are on 
slightly converging courses) then the overtaking vessel will move past 
the other and both will feel powerful bow-out moments together with 
a mutual attraction. This may cause both ships to 'fly apart' and their 
sterns to collide as shown in Figure 5. 

4. Usually an overtaking manoeuvre, affected by interaction, does not get 
as far as the final stages without collision or a violent change of 
course.   If it did, it would find the overtaking ship experiencing an 
increase in resistance which slows it down.   At the same time, the 
overtaken ship feels its resistance reduce, so it speeds up.  The result 
is that the overtaking ship finds it more difficult to complete its passing 
manoeuvre and may, in extreme cases, get 'trapped'. 

Comment 

Overtaking manoeuvres should always be treated with caution. Relative 
velocities are low so the ships are in proximity long enough for interaction to 
have an effect. Collisions may result, or the vessels may get 
hydrodynamically trapped together; the former can be avoided by allowing 
sufficient distance off, (or not overtaking at all), the latter by one or other of 
the vessels slowing down. 

Interaction when overtaking depends on the relative velocity; the lower it is 
the more likely it is that problems will occur. If it is zero then the ships are 
moving along together, as in a Replenishment at Sea (RAS) operation carried 
out by warships. In such cases the effects of interaction (albeit in deep water 
and therefore more controllable) must be known so that the most benign 
position alongside can be found. 

Other vessels must move in concert as part of their daily routine, the most 
obvious being the harbour tug. 



3.3 Ship and Moored Ship Interaction 

If one of the ships in a passing manoeuvre is stationary (moored alongside a 
jetty for example) it can still be affected by interaction. Just the same 
sequence of forces and moments takes place but, because the ship's mooring 
system is perhaps least stiff in surge, the moored ship may move ahead and 
astern on her berth. This, coupled with sideways and rotary motions may 
give rise to snatch loads in any slack or poorly-tended moorings which could 
break. Once one line has broken, others may soon follow. 

Comment 

Speeds past moored ships should be kept as low as practicable and should be 
at their lowest when underkeel clearances are small. Distance off should also 
be kept as large as is practicable. 

3.4 Tug-Ship Interaction 

The tug is generally much smaller than the ship it is attending and while a 
given depth of water may be deep for the tug, it may well be shallow for the 
ship. This means that, whereas the ship will have a big interactive effect on 
the tug, the tug will, naturally, have virtually no effect on the ship. 

Modern tractor or reverse-tractor tugs have enough power and 
manoeuvrability to be in less danger from the effects of interaction than their 
conventionally propelled counterparts. This is not to say that they are 
unaffected. Figure 6 shows measurements of the interaction sway force and 
yaw moment felt by a tractor tug model keeping pace with a large ship; it is 
seen that large forces develop. However, the fast response and enhanced 
manoeuvrability of such tugs means that they are much more able to 
manoeuvre out of difficulty. 

For any conventionally powered (and steered) tugs and other vessels similarly 
equipped, Figure 7 shows diagrammatically the sort of interaction forces and 
moments they will experience when they come alongside. Clearly there are 
areas near the bow and stern that are best avoided because the control that the 
rudder exerts adds to, rather than subtracts from, the effects of interaction. 
Of particular interest is the tendency to turn under the bow of the larger vessel 
brought about by interaction. This has caught a number of conventional tugs 
unawares over the years with disastrous consequences. The sudden changes 
in the interaction forces and moments acting on the vessel as it alters its fore 
and aft position alongside the bigger ship are largely to blame; if they are not 
anticipated by the helmsman, the smaller vessel will drive itself under the bow 
of the bigger ship. 



4.        INTERACTION NEAR FIXED BOUNDARIES 

It has already been mentioned that interaction can occur when a ship is near 
a bank. In general, fixed boundaries to waterways, whether they be banks of 
canals, rivers or fairways or whether they are the walls of enclosed docks, can 
have effects on ships which may be sudden and unexpected. Some of these 
are now discussed. 

4.1      Bank Effects 

It has already been shown that bank effects are manifest as a bow-out turning 
moment together with a suction. This will be experienced whether the bank 
is vertical (as in a waterway with piled sides), flooded (as in a fairway) or 
sloping (as in a canal). It will also occur if the water shoals to one side of the 
ship. 

The practical outcome of this phenomenon is usually that the ship sheers away 
from the bank. The 'bow cushion' dominates and turns the ship which then 
moves away from the bank and, as it does so, experiences less and less 
interaction as distance from the bank increases. This means that, to move 
parallel to a bank, interaction is countered by steering toward the bank; if the 
rudder is correctly set, a balance can, in principle, be found to cancel 
interaction (see Figure 8). 

Clearly, passage along the centreline of a waterway, midway between the 
banks, should avoid bank effects as they will cancel. This will be true in a 
waterway such as a canal with uniform banks, but in fairways and rivers 
whose banks may be anything but uniform, it cannot be relied upon implicitly 
It is often argued that in such circumstances, the ship will automatically 'find' 
the centre of the river, the bank effects acting as a form of control device. 
While it is true that bank effects will turn a ship toward the centre of a 
waterway, their relationship to the vessel's mass, inertia and turning ability 
is very unlikely to ensure that the ship does not simply over-shoot the 
centreline and ground on the other bank. 

A possible scenario in such a case is that the ship will sheer off one bank, 
head across the centre of the waterway to approach the opposite bank at an 
angle. If this angle is right, the vessel may turn, under the influence of the 
growing bow cushion, to leave the bank, without touching, and head for the 
other side of the waterway (Figure 8). Usually this process is divergent and 
'reflection' does not occur a second time so that the ship runs aground. 



4.2     Ships in Basins 

Ships moving in enclosed basins in which other ships are moving or moored 
can generate interaction-like effects. A few are now considered. 

Swinging and Manoeuvring 

A ship manoeuvring unaided in an enclosed basin may use a combination of 
propellers and bow thruster. This may cause the water in the basin to move 
and the resultant swinging of the ship (which acts as a form of 'paddle') will 
cause further movement and pressure changes. Ships moored in the vicinity 
may feel these pressure changes and range or surge on their moorings. 

Tug Pumping 

The modern harbour tug is usually powered by one or more propellers or, 
more generally nowadays, by two powerful thrusters. Not only are these 
good propulsion devices, but in the confined space of a basin they act as 
effective pumps, setting water in motion. In a very confined space (especially 
if the tugs are on short lines), they can cause the ships they are attending to 
move in unexpected ways. Figure 9 (from reference 2) shows a situation 
which was modelled physically; it shows how the flow induced by tug wash 
causes local pressure changes which affect the ship. Notice how the ship 
moves bodily toward the tug even though the direction in which the tug is 
pulling does not suggest such behaviour. Similar effects have been 
experienced in lock-bell-mouths when tug action has inadvertently caused 
ships to move in an unexpected direction. In extreme cases tug wash can 
cause an effect which is directly contrary to that expected. Figure 10 (also 
from reference 2) shows the turning moment measured on a ship model when 
'towed' by a tug in the manner shown. Notice how the turning moment on 
the ship actually changes sign (ie. acts in a direction opposite to the expected) 
at the shallowest water depth. This is yet another example of the powerful 
effect of shallow water, and suggests that care should be taken when using 
powerful tugs on short lines in enclosed basins. 

The Following Wake 

When a ship slows down too abruptly, the water moving with it may not be 
so obliging. The ship's wake takes time to slow down and, in shallow, 
confined alters it should be remembered that the body of water which moves 
with the ship takes time to slow down and in so doing, will overtake the ship. 
This may often affect the vessel and can move it ahead or, in extreme cases, 
turn it in an uncontrolled manner (see Figure 11). The lesson is clearly to 
reduce speed, or a swinging manoeuvre gradually. 



5.       EXAMPLES OF INTERACTION 

There are a number of marine accidents where interaction has played the 
main, or at least an important, role. Some are listed here and their 
importance lies not so much in their details as in the fact that most of them 
played an important part in developing our understanding of the phenomenon 
known as interaction. 

'Olympic/Hawke' Collision 

The 'Olympic', the sister ship of the Titanic' was in collision with the 
cruiser HMS 'Hawke' in the Solent in 1911. Both ships were on similar, but 
converging, courses and the 'Hawke' suddenly and unexpectedly sheered to 
port into the 'Olympic'. There was suggestion of both ship-ship interaction 
and bank effect on the 'Hawke', as well as a demonstration of the effects of 
speed and converging courses. This case really began the modern study of 
interaction, for a number of investigations were done for the subsequent 
litigation and beyond. The 'Olympic' was taken out of service for repair and 
her presence at Harland and Wolff delayed completion of the Titanic. 

Titanic '/'New York' 

While leaving Southampton on her maiden (and only) voyage, the Titanic', 
sister ship of the 'Olympic' was almost in an interaction-induced collision. 
While passing the Dock Head she passed close to two smaller passenger liners 
moored abreast. The outer one, 'New York', broke free and drifted toward 
the Titanic'. Only the quick actions of a tug prevented a collision, although 
the Titanic' was delayed. It is of interest to note how interaction played a 
part in the short life of the Titanic'; her completion was delayed by the 
'Olympic'/'Hawke' incident and her voyage was delayed by her incident with 
the "New York'. Had these incidents not occurred, the story of the Titanic' 
might have been very different. 

'Queen Mary7'Curacao' 

During the Second World War the 'Queen Mary', in use as a troop transport, 
cut the light cruiser 'Curacao' in two. Both vessels were moving at speed in 
deep water and the 'Queen Mary' was carrying out a zig-zag manoeuvre. 
Model tests carried out after the event showed that interaction from the larger 
ship caused the warship to move toward her from a significant distance off. 
The investigation (reference 3) provided some illumination of the powerful 
effect of speed and ship size on interaction. 

'HMS Nelson' Grounding 

Just before the Second World War, HMS Nelson, on leaving Portsmouth 
Harbour, took a sudden sheer to starboard and ran hard aground on the 
shallows off Haslar Wall. Subsequent model tests (reference 4) showed 
evidence of strong bank effect and gave the first published evidence of the 
interaction caused by a nearby shelving beach. 



'Royston Grange9/Tien Chee' 

In 1972 the reefer 'Royston Grange' collided with the tanker Tien Chee' in 
the River Plate. The 'Tien Chee' was heavily constrained by her draught and 
was moving more or less on the channel centreline. This caused the 'Royston 
Grange', who was making good speed, to move well to starboard. This 
caused her to sheer, from bank effect, into the Tien Chee'. Both ships 
caught fire and there was heavy loss of life. The subsequent investigation 
showed the importance of speed in any interaction incident as well as the 
magnitude of bank effect. It also initiated studies of interaction aimed at 
explaining the effect and informing the maritime community. This paper is 
the latest example of that continuing task. 
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SHIP SQUAT 

by Dr. C. B. Barrass 

Abstract 
The lecture begins with a description of what exactly ship squat is. Details are 
given on how squat predictions are very important for vessels with large DWT 
like supertankers or high speed ships like container vessels. 

Indications that a ship has entered shallow water conditions are listed to 
assist shipboard personnel. 

The main factors or variables for estimating maximum squat are discussed 
in detail. Three formulae are given for estimating maximum squat and whereabouts 
along the ship's length it is likely to occur. 

One of the three formulae is complicated. The other two formulae, however, 
are quick approximations giving answers that err on the high and therefore safe 
side. 

Measured squats on ship models and full sized ships are referred to, including 
the examples of "Herald of Free Enterprise" and the "QE //". 

Finally, a summary is given to show the advantages for shipowners, the ship's 
officer of the watch, the ship's pilot and the Port Authority, now that the maximum 
squat for ships can safely be predicted. I look forward to the discussions that follow 
the paper. 

What exactly is ship squat? 
Ship squat can be caused in two ways. On most occasions squat is caused by the 
forward motion of a vessel. 

Squat is the decrease in underkeel clearance caused by this forward motion.0' 

As the ship moves forward she develops a mean bodily sinkage together 
with a slight trimming effect. The algebraic sum of bodily sinkage and the trim 
ratio (forward or aft) is known as "ship squat". 

It must be emphasised that for any draught, squat is NOT the difference in 
reading between the situation when a vessel is stationary and when she is 
underway. This mis-conception is inaccurate and misleading. 

For example, the difference in bow draught readings due to forward motion 
might be 2m, whilst the decrease in underkeel clearance might only be 040m.(1) 

— 21 — 



The other occasion where squat will occur is with a moored vessel, in an ebb 
tide, alongside a jetty. (6)(14) Tide speed along the stationary vessel produces, as 
before, components of bodily sinkage and trimming effects. The two combined 
give ship squat for a stationary vessel. 

Maritime personnel, taking draught readings say for a draught survey, must 
be aware that the second situation could lead to underloading cargo aboard a 
vessel being loaded ready for departure.(6)(14) 

Ship squat has always existed on smaller slower vessels. It only amounted 
to a few centimetres and was therefore inconsequential.(3) 

In the 1960s and 1970s several new specialised ship types were developed. 
Two of these were the supertanker and the container ship. 

Supertankers of 250,000t DWT became common. They were almost too big 
for ports to accommodate them, resulting in static underkeel clearances as low as 
1-Om to l-5m. 

At the same time container ships were replacing many of the older general 
cargo ships. Service speeds for these container ships gradually increased from 16 
knots up to as high as 27 knots. Passenger liners also followed this specification 
for higher and higher speed up to 30 knots. 

However, with oil fuel costs in mind, for the 1990s new orders for container 
ships tend to specify service speeds ranging from 18 to 22 knots. In 1995, even 
passenger liners like the new "Oriana" operate with a design service speed of 24 
knots. Still high, but not as high as yesteryear. 

As underkeel clearances decreased and design service speeds rose, maximum 
squats gradually increased until they can be in the order of l-5m to l-75m. These 
are by no means inconsequential. 

Developments in ship design have, therefore, made the prediction of squat 
much more important from the safety point of view. Much more so in the 1990s 
than say 30 years ago.(3) 

A vessel behaves differently in shallow water than she does when she is in 
deep water. 13) It becomes necessary to know when a ship has entered shallow 
waters. This can be determined using a depth of influence co-efficient FD in the 
following manner. 

Let 'H' be the depth of water and let T' be the mean draught of the static 
ship, measured at or near to amidships. H/T is then worked out and compared 
with the FD value for each ship type.(4) 

__22__  



for a supertanker FD = 5.68 x T 
for a general cargo ship FD = 7.07 x T 
for a passenger vessel FD = 8.25 x T 
for a ro-ro vessel FD = 9.20 x T 
for a "Leander" frigate FD = 12.04 x T 

If H/T is above the respective FD value, the vessel's resistance will not alter, 
her speed will remain constant, her propeller revs will remain steady and her 
squat will remain unchanged. She is in fact operating in deep water conditions. 

Below the corresponding value of FD for each vessel, each ship will be in 
shallow water conditions. Below this FD value, the vessel's resistance will increase, 
her speed will reduce despite the same input of engine power, her propeller revs 
will reduce and her squat will increase as H/T approaches 1.10. (7) 

Other indications that a ship has entered shallow waters are:—(3) 
a) wave making increases at the forward end of the ship; 
b) vessel becomes more sluggish to maneouvre; 
c) ship may start to vibrate suddenly because of entrained water effects causing 

resonance; 
d) rolling, pitching and heaving motions decrease due to the cushion of water 

beneath the vessel. 

The main factors affecting ship squat are:— 
a) the forward speed VK which is the speed of the ship over the ground. This is 

2 
the most important factor because ship squat varies directly as VK . If the 

speed is halved then the squat is quartered. 
b) the block co-efficient CB. This also is important. Squat varies directly with 

the CB. In other words, oil tankers and OBOs will have comparitively more 
squat than passenger liners and container ships. This is shown graphically 
in figure 3. 

c) the relationship between the depth of water (H) and the static mean draught 
of the ship (T). In my research I particularly considered measured squats for 
H/T range of 1.10 to 1.40. As H/T decreases, squats increase. 

d) the presence of river or canal banks. The closer banks are to the sides of a 
moving vessel, the greater will be the squats.(8) 

e) the presence of another ship in a river in a crossing or passing manoeuvre.(9) 

The presence of the second ship increases the squats on both vessels. 

In open water conditions, having no adjacent banks, it is possible to calculate 
an artificial width of water to represent the river banks. This is known as a "width 
of influence" (see later notes).(4) 

Practical calculations for squat(3) 
An important factor is the blockage factor 'S', where S = b x T/B x H as shown 
in 
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18 knots. As described previously, this would produce a mean bodily sinkage 
plus additional trim by the head. 

Maximum squat occurred at the bow, resulting in water entering the vessel 
and leading to capsize of the ship. Almost 200 people lost their lives. 

The "QE2" was leaving port in shallow water conditions. In the technical 
press it was reported that the forward speed was 24 to 25 knots just prior to 
grounding of the vessel. 

According to Lloyds Lists, costs to the owners were $13.2 million in repairs 
and some $50 million in lost passenger bookings !! 

These two examples illustrate that squat can be linked to financial loss and, 
more importantly, to loss of life.(2) 

When a ship grounds due to excessive squat shipowners may be faced with 
the following costs:— 

a) repair costs for the ship; 
b) repair costs for repairs to lock sills; 
c) compensation claims for oil spillage; 
d) drydock charges for inspection of a ship; 
e) time out of service. Loss of earnings can be as high as £100,000 per day. 

Prevention 
One way of preventing excessive squat and its effects is to reduce speed. This is 
the most efficient way. Another way to consider is to increase H/T value. This can 
be achieved by discharge of loading within the ship such as water ballast, or to 
move the vessel into deeper water. 

Reducing the loading within the ship decreases the value of T which in turn 
increases H/T Reducing this draught T also reduces CB value. CB at a lower draught 
will, as formulae show, reduce squat value. 

The possession of a computer program to predict squat data would also be 
of benefit to ships' officers.(10) There is one which prints out the following:— 

a) whether ship is in open waters or in a confined channel; 
b) gives maximum squats and where they occur; 
c) gives remaining underkeel clearances at bow and stern; 
d) gives the speed required for the vessel to go aground at the bow and at the 

stern. 

This computer program covers all types of ships, for all relevant speeds, 
and is able to predict for both open water and confined channel conditions.(10) 
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Shipboard personnel such as the master and deck officers need to know about 
the theory and possible dangers resulting from excessive squat.(11)-(12) (16) 

Ship pilots also need a detailed appreciation of this topic when assisting 
with the passage of ships along narrow rivers and through canals.(11) (12) (16) 

A third group of personnel needing to know about ship squat is the Port 
Authorities. Some of them, aware of possible grounding problems, "request" a 
static minimum underkeel clearance of 1.Om to l.25m before allowing entry of a 
vessel into their river. (11)(12)(16) Maximum transit speed is also "requested". 

In the past there has been a tendency to overestimate squat on certain routes 
and to underload the cargo accordingly. Now that squat can predicted be more 
accurately, the ship can sometimes be loaded up an extra few centimetres giving 
the vessel extra earning capacity. Leadline limits, of course, always have to be 
adhered to. 

In the past ship's pilots have used 'trial and error', 'rule of thumb' and years 
of experience to bring their vessels safely into and out of port. 

The positioning of a simple graph of ship speed against maximum squat 
placed on the bridge may be all that is required. See figure 2 for such an example. 

The pilot can observe quickly from this graph a speed that could cause 
problems and then a speed that would give a squat which would leave the ship 
with a safe dynamical underkeel clearance. 

By maintaining the ship's trading availability, this paper assists in 
safeguarding and possibly increasing the shipowners annual profit. 

After all, prevention is better than cure........... and a lot CHEAPER!! 
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3. Ship Squat Manual — involving 23 years of research. 
4. Width of influence and depth of influence for ships in open waters. 
5. Measurement procedures for squat on ships. 
6. Ship speed VK in a river having tidal flow or current. 
7. Reduction of ship speed and propeller rpm for vessels in shallow waters. 
8. Ship squat coefficients for vessels with specified block coefficients/blockage 

factors. 
9. Squatting of ships crossing/overtaking in a confined channel. 
10. Computer program using BASIC for predicting ship squat. 
11. Ship squat — a guide to masters. 
12. Bibliography survey listing 115 references re ship squat. 
13. Ship handling problems of vessels in shallow waters. 
14. Problems of underloading a ship due to squat in an ebb tide situation. 
15. Change of trim characteristics for a ship squatting in shallow water 

conditions. 
16. Twenty Questions ... and Answers, on the phenomenon of ship squat. 

* Anyone interested in acquiring any of these listed papers should apply to 
Dr. C. B. Barrass directly or through the Nautical Institute secretariat at Lambeth 
Road, London. 

Extra notes 
Questions "from the floor" after the lecture: 

1. Have the DTp issued any "M' notices making reference to ship squat ? 

2. How is squat affected when one vessel overtakes another vessel in a narrow 
river? Are the increases 25%, 50% or 100% ? 

3. What is "transverse squat" on container vessels and modern supertankers? 

4. From which areas of the world have measured full-size squats been analysed ? 

Answers to these 4 questions given on separate sheet (see over page). 
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Answers to questions on page 33 

1. Yes; the DTp have issued several 'M' notices making reference to ship squat 
plus notes on interaction. These notices are numbered as follows:— M 854 
(August 1978), M930 (April 1980), M 1015 (March 1982) and M 1470 
(November 1991). 

2. When the amidships of both vessels are in line with each other across the 
river the squats of both vessels when moving ahead can be increased by 50% 
to 100% compared to a single ship moving ahead up the river. 

3. In the situation described in answer 2, both vessels will move towards each 
other accompanied by an angle of heel. The bilge plating of both vessels 
nearest to the river banks will move nearer to the river bed. This is "transverse 
squat", that is, loss or decrease of underkeel clearance. Too much "transverse 
squat" causes grounding and damage of the bilge keel and/or bilge keel 
plating strakes. 

4. Measured full-size squats have been studied from the following areas:— 
St. Lawrence Seaway, Panama Canal, Malacca Straits, Persian Gulf, Lake 
Maracaibo, Manchester Ship Canal, River Gironde, River Elbe, River Tees, 
River Humber, Port Wellington and Bromborough Lock. 
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The Voith Water Tractor and its uses 

S.R. Taylor BSc(Hons). Partner, E.G. Goldsworthy & Co. 

What is a Voith Water Tractor 

The principal characteristics of a modem Voith Water Tractor ( see fig. 1 ) are :- 

1. Twin Voith Schneider propellers arranged athwartships no more than 30%lwl from 
forward. 

2. A nozzle or guard plate which acts both to augment thrust and protect the propeller blades 
from grounding or contact with another vessel's hull. The construction of the supporting 
struts is such that a modern guard arrangement should be able to withstand very high 
impact forces without the propeller blades suffering damage or the watertight integrity of 
the hull being compromised. 

3. A stabilising fin aft. This was originally conceived and designed as an aid to course 
stability but in the early development it was found that this fin has significant uses in 
towing, indeed special towing concepts and procedures were developed to utilise the 
effects of the fin. 

4. One set of towing gear, now almost exclusively from a winch (tractor crews never trust 
ships lines) through a towing bollard or staple situated over the centre of the fin ( in 
practical terms this point is a compromise position, for towing ahead of a vessel the ideal 
point is nearer the inboard end of the skeg, as stern tug it would ideally be  nearer the 
outboard end ). For escort services where for most of the time the tractor follows the ship 
passively but made fast with a slack line, a second towing point may be arranged in the 
bulwark over the outboard end of the skeg to reduce the helmsman's efforts during a 
routine operation. 

5. Reduced tug manning and the need for all-round visibility during towing operations has 
led to the small central wheelhouse, in some cases for one man operation with all 
propeller engine and winch controls arranged on a central control stand. 

A brief history lesson 

In the early 1950's Voith in Germany developed a new style tug in response to tug losses 
through girting and being overrun under a ships bow ( see fig. 2 ). The fundamental change 
was that the Voith Schneider propellers to be used were arranged forward and the towing 
point aft to avoid the unstable equilibrium which existed with a conventional tug's midship 
towing point and propulsion aft. In manoeuvring with this forward propelled vessel, the 
immediate difference was that it steered in to a turn rather than the stem swinging outside 
the turning circle as with stem propelled vessels. The introduction of such vessels known in 
generic form as Voith Water Tractors was obviously slow in the earlier days but they now 
number approximately 600 world-wide ( with free-running speeds up to 15 knots and bollard 
pulls in excess of 70 tonnes ) and have had a major influence in tug safety. 

Towage requirements 

The requirement for towage assistance may taken as the period when the ships reduced 
speed means that she is no longer under total self control ( see fig. 3 ) and has insufficient 
sea room to manoeuvre safely without external assistance. This period however may be 
somewhat extended by the modem requirement for escort services for ships carrying 
dangerous cargoes in restricted waters. However from the tractor's point of view this escort 
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requirement is merely an extension of the normal service though up to much higher speeds 
than in the past. 

This question of speed not only applies to escort services. Many ships at sea today have very 
high minimum speeds which may be above safe operating speeds for some tugs, leaving the 
ship in limbo until the speed is reduced sufficiently. The sight of a tug in the vicinity of the 
ships bow or stem should not be taken as reassurance that practical assistance is 
immediately available. The trend in modern tractor design i towards being capable of 
assistance at speeds in the region of 10 knots and above rather than the lower speeds of the 
past. This means real assistance, not just for show, as the vicinity of a ship moving at 10-11 
knots is a much more arduous working environment than near a ship moving at half that 
speed. Not only do things happen twice as fast but forces involved generally increase with 
the square of the speed. The question arises then that if the tug is not capable of providing 
the required assistance at that speed then should it be made fast in the first place whether on 
a slack line or not? 

Tractors do not come cheaply, so in economic terms the fewer the better. This places further 
burdens on the modem tractor in that in addition to the required capability of working at 
higher speeds it will often work the end of the ship alone, obviously meaning no back up in 
case of problems ( here the question of reliability and the ability to work with one propeller 
only, without exerting adverse thrusts assumes great importance ). The days when one tug 
would push the bow in and another would check are nearly gone. 

Modem towing operations 

There are four main positions around a ship where a tug will exert a towing force :- 
1. Line tow forward 
2. Push/pull shoulder 
3. Push/pull quarter 
4. Line tow aft 

Forward 

Traditionally this has been the position for the first tug to be made fast although new research 
has backed up modern thought that this is really the least effective position in that the 
steering forces that can be exerted with a stern propelled tug are minimal until the way is 
almost off a ship and braking forces are nil until the tug can either come around through 180 
degrees or pull the ship into a tight turn to reduce its speed. Not only is the bow the most 
difficult position for the tug at speed, it is also the least effective point to apply a turning 
moment through the lever arm being short and the applicable force being limited. 

A pilot's comment on being faced with this dilemma was that he felt comfortable seeing the 
mast of the tug under the fo'c'sle, he could not see the stem tug without going out to the 
bridge wing. Only in the final approach to a berth or lock when the speed is minimal does this 
tug come into its own. 

Evidence of the limited help of the bow tug was noticed in one of Europe's busiest container 
ports when the conventional single screw tug was attempting to pull a modest sized first 
generation container vessel into a starboard turn of approx. 70 degrees with an ebb tide of 
approx. three knots on the starboard bow . The 40 tonne bollard pull tug was fifteen minutes 
holding a safe position on the starboard bow and pulling at maximum power to make the turn. 
In order that the tug was not put into a girting situation the ship was unable to use more than 
the occasional burst at dead slow to overcome the ebb tide . 

As already stated, these problems were the driving force behind the development of the 
tractor, with the forward propulsion reducing the dangers of girting. However the limitations of 
pulling on a short lever arm still apply. Because there are circumstances when a strong pull 
on the bow is the best alternative, the thrust distribution of the Voith Schneider propeller is 
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now arranged to permit relatively high steering forces to be used without loss of forward 
thrust. This permits turning forces at larger towline angles and quicker movement from one 
bow to the other without slacking the line. 

Shoulder 

This was a secondary position forward but is used to reduce the danger to the tug and 
simplify the towing gear and crew requirements. Push/pull operations were developed 
particularly in USA , Japan and Australia where lock systems did not complicate the towing 
operation. However the effectiveness of trying to turn a vessel from here is somewhat similar 
to the forward position but several special points need addressing. To turn a vessel, a tug 
positioned on the inside of the turn (i.e. acting as a backspring against the ships motion) will 
assist the turn much more than pushing from the outside of the turn. Indeed the pusher may 
initially drag the ship into a turn the wrong way due to the resistance of the, tug inducing a 
backspring type effect. Swell conditions are the enemy of this operation as not only is the tug 
likely to range up and down the ship's side, the short tow lines used minimise any spring 
properties . However off the berth the push on the shoulder is invaluable. Modem ships with 
enormous flare and overhang often mean the tug is positioned so far aft to be pushing at the 
pivot point meaning there is no turning lever, merely a push bodily through the water. 

Quarter 

Again flare and overhang influence the effectiveness of a tug working in this position as to 
how far aft the effective push may be applied. Obviously the further aft the better but then 
the tug is both drawn in to the low pressure zone but may also become perilously dose to the 
rotating propeller. For a safe approach it is often necessary for the tug to land amidships and 
then move aft to the towing lead. Often the lead is near the bridge front which means that for 
a 30 metre tug the safest position is to lie forward of the towline until required. However once 
in this position good turning forces are achievable, but only when positioned on the inside of 
the turn. 

Aft 

Line towing at the stern is now well recognised as the most effective towing position with 
respect to both braking and steering assistance, but only since the advent of modem 
manoeuvrable tractors such as the Voith Water Tractor has this become day-to-day practice, 
since conventional tugs are only effective in this area at minimal speeds. The single biggest 
advance in modem towing, that of indirect towing came about through the hull design of the 
tractor with the skeg under the afterbody ( see fig. 4 ). It was found that with careful 
positioning of the towing point above the skeg, the tractors hull resistance (aided by the large 
skeg ) when being pulled through the water at oblique angles to the towline, could generate 
massive towline forces far in excess of the nominal bollard pull. Furthermore in contrast to 
other towing methods the towline force actually increased with the ships speed. Considerable 
research and development has gone into refining this towing method particularly with escort 
towage becoming today's catchword with its demands for dynamic assistance in potentially 
catastrophic circumstances of steering and or engine failure in confined waters. In this 
operation the hull and skeg resistance generate the towline force with the propellers merely 
aligning the hull to the correct towline angle both to itself and the ship. 

It is erroneous to say that any modern omni-directionally propelled tug can perform effective 
high speed indirect towing, even any Voith water tractor without due consideration of the 
speed and other circumstances, such as towing gear, tractor stability, hull form, control 
systems etc. Coincidentally the factors leading to a good indirect towing vessel also minimise 
the perceived problems of working the skeg close to the ships propeller wash. However in 
escort operations normally no assistance is required from the tractor so to minimise the 
workload on the tractors helmsman during long passive periods, a second towing point at the 
outboard end of the skeg can pin the tractor under the line and reduce the steering effort 
required. This towing point can either be fixed as with a Panama lead or removable so that 
the point of attack can be moved back to the centre of the skeg when required. The only 
drawback to towing through a fixed point in the end of the skeg is that higher steering forces 
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are required to place the tractor in the correct attitude to obtain maximum towline forces. In 
practice though, this causes no problem as the highest achievable forces need only 
approximately half the tractors installed power to hold the required attitude 

The other significant towing operation at a ships stern is applying braking forces to the ship ( 
see fig. 5). Again the tractor permits such operation from zero up to the highest speeds. This 
is mainly due to the controllable pitch characteristic of the Voith Schneider propeller with its 
open attitude to inflow from any direction. Using full engine speed, reverse pitch can be 
applied until full power is absorbed from the engine without fear of excessive overload. Thus 
when arresting the ship's movement the nominal bollard pull is exceeded due to the propeller 
thrust being augmented by the resistance of the hull being pulled through the water. Any 
fixed pitch propeller whether on a conventional shaft or in a Z-drive unit suffers from the very 
real problem of stalling once speeds are above six knots in this operation. 

Simplicity is a key attribute of the Voith Water tractor. In all four of the towing positions 
discussed, the tractor's one towing point is at the most effective end, hence there is no 
embarrassment in sending her to any of these positions and certainly no need to consider 
letting go and reconnecting the towline through another lead. This is of particular signifcance 
to pilots and ships masters who have much else to consider when in close proximity to a 
berth, and are often relying on deck crews of limited number and/or strength and 
competence. The control of the tractor is also the simplest system. Whichever way the 
tractor is moving the skipper has a logical control system of wheel and levers to turn or push 
in the natural direction, limiting the chances of mistakes due to controls applied in unwanted 
directions. Because of the simple towing arrangement and the precise manoeuvrability, 
moving to and from bow to shoulder or stem to quarter during one operation presents no 
problem. 

Towline systems 

After the basic hull/propeller layout is settled in a new tractor design, the next highest priority 
is the towing arrangement of winch, staple and towing gear. Because a Voith Water Tractor 
can easily generate at least double the nominal bollard pull whilst towing by the indirect 
method, enormous safety margins are now needed for winch capacity and towline breaking 
strains. It is common for an owner building a 50 tonne nominal bollard pull tractor to specify 
150 tonnes brake capacity and an all rope towline of 180 tonnes capacity. Historically a 
sacrificial pennant or 'junk' of lesser breaking strain than the winch line was connected in the 
end of the towline to limit the loss of gear when the line parted at the most common point - 
the ships lead. With modern all rope towlines of such strength and high brake capacities on 
the winch, the idea now is that there is no weak link in the towline; if an unlikely emergency 
arose to place the tractor in jeopardy then the emergency release on the winch is activated to 
dump the entire towline which can then be recovered and reused. With the high cost of 
modern tow ropes the last thing the tractor owner wants is broken gear, so to protect the rope 
where it passes through the ships lead, sacrificial sleeves may be used. The two main 
reasons for moving to an all or part rope system for modern towing methods are :- 

1. The weight of the towline to be handled by the ship's deck crew. If 180 tonne BS wire 
were used then this could be almost impossible to handle. 

2. Stretch is needed. When working push/pull on the shoulder or quarter, only short towline 
lengths are used so there is never any catenary spring effect. Another significant point is 
that connecting the tow in these positions must often be done by hand as there is no lead 
to a winch on the ship's deck. 

Typically a modern tow winch will need a brake capacity of at least three times the nominal 
bollard pull with simple brake/clutch control adjacent to the skipper, a very high light load 
recovery speed ( e.g. 90 metres/min.) and a drum designed to limit spooling problems. 
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Conciusion 

The modem Voith water tractor continues with the original conceptual layout as developed in 
the early days but tendencies nowadays are :- 

1. Nominal bollard pull of 40 - 55 tonnes for a harbour operation. 

2. Larger displacement and underwater lateral area to maximise the use of the hull as a 
steady towing platform and as added resistance during high speed operations. 

3. Large beam and freeboard to maximise dynamic stability criteria and to avoid deck edge 
immersion at normal angles of heel when indirect towing. 

4. Freeboard aft the same as freeboard forward for working at speed in either direction. The 
modern tractor hull is almost a double ended form with speed skeg-first typically being 
only approximately half a knot less than propeller-first. Indeed modern operations are 
beginning to be confused by the terms bow and stern, to the tractor skipper more 
importance is placed on propeller-end and skeg-end. 

5. High performance towing systems. 

These tendencies are due to the need for the same safety and simplicity of operations over 
the higher speed ranges demanded today, but without making such tractors hybrids of 
limited use in general towing operations. Fewer tractors with small crews are the only real 
solution available to the tug owners dilemma of offering economic but safe towage services. 
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